File size: 14,352 Bytes
51bea4b
 
 
ea6d8b2
51bea4b
 
 
ea6d8b2
51bea4b
ea6d8b2
 
51bea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea6d8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import textwrap
import unicodedata
import re
import time
import zlib
from typing import Iterator, TextIO, Union
import tqdm
import pyperclip
import urllib3
import openai
import tiktoken


def exact_div(x, y):
    assert x % y == 0
    return x // y


def str2bool(string):
    str2val = {"True": True, "False": False}
    if string in str2val:
        return str2val[string]
    else:
        raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")


def optional_int(string):
    return None if string == "None" else int(string)


def optional_float(string):
    return None if string == "None" else float(string)


def compression_ratio(text) -> float:
    return len(text) / len(zlib.compress(text.encode("utf-8")))


def format_timestamp(seconds: float, always_include_hours: bool = False, fractionalSeperator: str = '.'):
    assert seconds >= 0, "non-negative timestamp expected"
    milliseconds = round(seconds * 1000.0)

    hours = milliseconds // 3_600_000
    milliseconds -= hours * 3_600_000

    minutes = milliseconds // 60_000
    milliseconds -= minutes * 60_000

    seconds = milliseconds // 1_000
    milliseconds -= seconds * 1_000

    hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
    return f"{hours_marker}{minutes:02d}:{seconds:02d}{fractionalSeperator}{milliseconds:03d}"


def write_txt(transcript: Iterator[dict], file: TextIO):
    for segment in transcript:
        print(segment['text'].strip(), file=file, flush=True)


def write_vtt(transcript: Iterator[dict], file: TextIO, 
              maxLineWidth=None, highlight_words: bool = False):
    iterator  = __subtitle_preprocessor_iterator(transcript, maxLineWidth, highlight_words)

    print("WEBVTT\n", file=file)

    for segment in iterator:
        text = segment['text'].replace('-->', '->')

        print(
            f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
            f"{text}\n",
            file=file,
            flush=True,
        )

def write_srt(transcript: Iterator[dict], file: TextIO, 
              maxLineWidth=None, highlight_words: bool = False):
    """
    Write a transcript to a file in SRT format.
    Example usage:
        from pathlib import Path
        from whisper.utils import write_srt
        result = transcribe(model, audio_path, temperature=temperature, **args)
        # save SRT
        audio_basename = Path(audio_path).stem
        with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
            write_srt(result["segments"], file=srt)
    """
    iterator  = __subtitle_preprocessor_iterator(transcript, maxLineWidth, highlight_words)

    for i, segment in enumerate(iterator, start=1):
        text = segment['text'].replace('-->', '->')

        # write srt lines
        print(
            f"{i}\n"
            f"{format_timestamp(segment['start'], always_include_hours=True, fractionalSeperator=',')} --> "
            f"{format_timestamp(segment['end'], always_include_hours=True, fractionalSeperator=',')}\n"
            f"{text}\n",
            file=file,
            flush=True,
        )

def __subtitle_preprocessor_iterator(transcript: Iterator[dict], maxLineWidth: int = None, highlight_words: bool = False): 
    for segment in transcript:
        words = segment.get('words', [])

        if len(words) == 0:
            # Yield the segment as-is or processed
            if maxLineWidth is None or maxLineWidth < 0:
                yield segment
            else:
                yield {
                    'start': segment['start'],
                    'end': segment['end'],
                    'text': process_text(segment['text'].strip(), maxLineWidth)
                }
            # We are done
            continue

        subtitle_start = segment['start']
        subtitle_end = segment['end']

        text_words = [ this_word["word"] for this_word in words ]
        subtitle_text = __join_words(text_words, maxLineWidth)
        
        # Iterate over the words in the segment
        if highlight_words:
            last = subtitle_start

            for i, this_word in enumerate(words):
                start = this_word['start']
                end = this_word['end']

                if last != start:
                    # Display the text up to this point
                    yield {
                        'start': last,
                        'end': start,
                        'text': subtitle_text
                    }
                
                # Display the text with the current word highlighted
                yield {
                    'start': start,
                    'end': end,
                    'text': __join_words(
                        [
                            {
                                "word": re.sub(r"^(\s*)(.*)$", r"\1<u>\2</u>", word)
                                        if j == i
                                        else word,
                                # The HTML tags <u> and </u> are not displayed, 
                                # # so they should not be counted in the word length
                                "length": len(word)
                            } for j, word in enumerate(text_words)
                        ], maxLineWidth)
                }
                last = end

            if last != subtitle_end:
                # Display the last part of the text
                yield {
                    'start': last,
                    'end': subtitle_end,
                    'text': subtitle_text
                }

        # Just return the subtitle text
        else:
            yield {
                'start': subtitle_start,
                'end': subtitle_end,
                'text': subtitle_text
            }

def __join_words(words: Iterator[Union[str, dict]], maxLineWidth: int = None):
    if maxLineWidth is None or maxLineWidth < 0:
        return " ".join(words)
    
    lines = []
    current_line = ""
    current_length = 0

    for entry in words:
        # Either accept a string or a dict with a 'word' and 'length' field
        if isinstance(entry, dict):
            word = entry['word']
            word_length = entry['length']
        else:
            word = entry
            word_length = len(word)

        if current_length > 0 and current_length + word_length > maxLineWidth:
            lines.append(current_line)
            current_line = ""
            current_length = 0
        
        current_length += word_length
        # The word will be prefixed with a space by Whisper, so we don't need to add one here
        current_line += word

    if len(current_line) > 0:
        lines.append(current_line)

    return "\n".join(lines)

def process_text(text: str, maxLineWidth=None):
    if (maxLineWidth is None or maxLineWidth < 0):
        return text

    lines = textwrap.wrap(text, width=maxLineWidth, tabsize=4)
    return '\n'.join(lines)

def slugify(value, allow_unicode=False):
    """
    Taken from https://github.com/django/django/blob/master/django/utils/text.py
    Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
    dashes to single dashes. Remove characters that aren't alphanumerics,
    underscores, or hyphens. Convert to lowercase. Also strip leading and
    trailing whitespace, dashes, and underscores.
    """
    value = str(value)
    if allow_unicode:
        value = unicodedata.normalize('NFKC', value)
    else:
        value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
    value = re.sub(r'[^\w\s-]', '', value.lower())
    return re.sub(r'[-\s]+', '-', value).strip('-_')

def download_file(url: str, destination: str):
        with urllib3.request.urlopen(url) as source, open(destination, "wb") as output:
            with tqdm(
                total=int(source.info().get("Content-Length")),
                ncols=80,
                unit="iB",
                unit_scale=True,
                unit_divisor=1024,
            ) as loop:
                while True:
                    buffer = source.read(8192)
                    if not buffer:
                        break

                    output.write(buffer)
                    loop.update(len(buffer))

# -------------used for text post processing tab----------------
system_prompt = "You are a helpful assistant."
user_prompt = "请帮我把下面的文本纠正错别字并添加合适的标点符号,返回的消息只要处理后的文本:"

def get_chunks(s, maxlength, separator=None):
    start = 0
    end = 0
    while start + maxlength  < len(s) and end != -1:
        if separator is not None:
            end = s.rfind(separator, start, start + maxlength + 1)
            segment = s[start:end]
            yield segment.replace(separator, "")
            start = end +1
        else:
            end = start + maxlength
            yield s[start:end]
            start = end

    yield s[start:]
    
def post_processing(text, use_chatgpt, user_token, apply_correction, auto_punc, separator, remove_words):
    # print(f"==>> separator: {separator}")
    original_separator1 = " "
    original_separator2 = ","
    
    if use_chatgpt == True:
        if user_token == "":
            text = "请先设置你的OpenAI API Key,然后再重试"
            return text
        else:
            text = chat_with_gpt(text, system_prompt, user_prompt)
            return text
    # 对于长文本需要先分段再推理,推理完再合并    
    elif auto_punc == True:
        # 自动分段文本之前先去除原有的标点符号
        text = text.replace(original_separator1, "") 
        text = text.replace(original_separator2, "") 
        import paddlehub as hub
        model = hub.Module(name='auto_punc', version='1.0.0')
        t3 = time.time()
        # split long text to short text less than max_length and store them in list
        max_length = 256
        chunks = list(get_chunks(text, max_length))
        results = []
        results = model.add_puncs(chunks, max_length=max_length)
        text = ",".join(results) # 分段处硬编码成使用中文逗号分割
        t4 = time.time()
        print("Auto punc finished. Cost time: {:.2f}s".format(t4-t3))
    # print(f"==>> text after auto punc: {text}")
    else:    
        # 将空格全部统一替换成一种分隔符
        if separator == "\\n":
            # 直接使用separator会无法换行
            text = text.replace(original_separator1, "\n") 
            text = text.replace(original_separator2, "\n") 
        else:
            text = text.replace(original_separator1, separator)
            text = text.replace(original_separator2, separator)

    if apply_correction == True:
        import pycorrector
        print("Start correcting...")
        t1 = time.time()
        text, detail = pycorrector.correct(text)
        t2 = time.time()
        print("Correcting finished. Cost time: {:.2f}s".format(t2-t1))
        print(f"==>> detail: {detail}")

    # 去掉语气词
    t5 = time.time()
    remove_words = remove_words.split(",") + remove_words.split(",") + remove_words.split(" ")
    for word in remove_words:
        text = text.replace(word, "")
    t6 = time.time()
    print("Remove words finished. Cost time: {:.2f}s".format(t6-t5))

    return text
    
def replace(text, src_word, target_word):
    text = text.replace(src_word, target_word)
    return text
    
def copy_text(text):
    pyperclip.copy(text)

def num_tokens_from_messages(message):
    """Return the number of tokens used by a list of messages."""
    model="gpt-3.5-turbo-0613"
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        print("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model in {
        "gpt-3.5-turbo-0613",
        "gpt-3.5-turbo-16k-0613",
        "gpt-4-0314",
        "gpt-4-32k-0314",
        "gpt-4-0613",
        "gpt-4-32k-0613",
        }:
        tokens_per_message = 3
        tokens_per_name = 1
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = 4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif "gpt-3.5-turbo" in model:
        print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
        return num_tokens_from_messages(message, model="gpt-3.5-turbo-0613")
    elif "gpt-4" in model:
        print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
        return num_tokens_from_messages(message, model="gpt-4-0613")
    else:
        raise NotImplementedError(
            f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
        )
    num_tokens = 0
    num_tokens += tokens_per_message
    message = user_prompt + message
    num_tokens += len(encoding.encode(message))
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return f"Tokens 计数: {num_tokens}"

def on_token_change(user_token):
    openai.api_key = user_token

def chat_with_gpt(input_message, system_prompt, user_prompt, temperature=0, max_tokens=4096):
    system_content = [{ "role": "system", "content": system_prompt }]
    user_content = [{ "role": "user", "content":  user_prompt + input_message }]
    try:
        completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_content + user_content, temperature=temperature, max_tokens=max_tokens)
        response_msg = completion.choices[0].message['content']

        prompt_tokens = completion['usage']['prompt_tokens']
        completion_tokens = completion['usage']['completion_tokens']
        total_tokens = completion['usage']['total_tokens']
        print(f"==>> prompt_tokens: {prompt_tokens}")
        print(f"==>> completion_tokens: {completion_tokens}")
        print(f"==>> total_tokens: {total_tokens}")
        return response_msg
    
    except Exception as e:
        return f"Error: {e}"

    
# -------------used for text post processing tab----------------