File size: 6,625 Bytes
7b093ca
 
 
 
 
5cce9a4
 
 
7b093ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242f3e4
7b093ca
 
5cce9a4
31ae121
7b093ca
 
 
 
 
 
242f3e4
 
 
 
 
 
 
 
 
 
 
 
 
4c6688c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2e816
242f3e4
 
 
 
 
 
 
0fba50f
3f2e816
242f3e4
 
 
 
 
 
 
 
 
 
 
3f2e816
 
7b093ca
5cce9a4
 
 
7b093ca
242f3e4
 
 
 
 
 
 
 
 
 
 
 
 
4c6688c
 
 
242f3e4
 
 
4c6688c
 
242f3e4
 
0fba50f
 
3f2e816
242f3e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from transformers import AutoTokenizer, EsmForProteinFolding
from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein
from transformers.models.esm.openfold_utils.feats import atom14_to_atom37
import torch
from logging import getLogger

logger = getLogger(__name__)

def convert_outputs_to_pdb(outputs):
    final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs)
    outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()}
    final_atom_positions = final_atom_positions.cpu().numpy()
    final_atom_mask = outputs["atom37_atom_exists"]
    pdbs = []
    for i in range(outputs["aatype"].shape[0]):
        aa = outputs["aatype"][i]
        pred_pos = final_atom_positions[i]
        mask = final_atom_mask[i]
        resid = outputs["residue_index"][i] + 1
        pred = OFProtein(
            aatype=aa,
            atom_positions=pred_pos,
            atom_mask=mask,
            residue_index=resid,
            b_factors=outputs["plddt"][i],
            chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None,
        )
        pdbs.append(to_pdb(pred))
    return pdbs[0]

def fold_prot_locally(sequence):
    logger.info("Folding: " + sequence)
    tokenized_input = tokenizer([sequence], return_tensors="pt", add_special_tokens=False)['input_ids'].cuda()

    with torch.no_grad():
        output = model(tokenized_input)
    pdb = convert_outputs_to_pdb(output)
    return pdb

def suggest(option):
   if option == "Plastic degradation protein":
     suggestion = "MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ"
   elif option == "Antifreeze protein":
     suggestion = "QCTGGADCTSCTGACTGCGNCPNAVTCTNSQHCVKANTCTGSTDCNTAQTCTNSKDCFEANTCTDSTNCYKATACTNSSGCPGH"
   elif option == "AI Generated protein":
     suggestion = "MSGMKKLYEYTVTTLDEFLEKLKEFILNTSKDKIYKLTITNPKLIKDIGKAIAKAAEIADVDPKEIEEMIKAVEENELTKLVITIEQTDDKYVIKVELENEDGLVHSFEIYFKNKEEMEKFLELLEKLISKLSGS"
   elif option == "7-bladed propeller fold":
     suggestion = "VKLAGNSSLCPINGWAVYSKDNSIRIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDGTSWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFKMEKGKVVKSVELDAPNYHYEECSCYPNAGEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGAYGVKGFSFKYGNGVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKESTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTIDK"
   else:
     suggestion = ""
   return suggestion


def molecule(mol):
    x = (
        """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
    <style>
    body{
        font-family:sans-serif
    }
    .mol-container {
    width: 100%;
    height: 600px;
    position: relative;
    }
    .mol-container select{
        background-image:None;
    }
    </style>
     <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
    <script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
    </head>
    <body>  
    <div id="container" class="mol-container"></div>
  
            <script>
               let pdb = `"""
        + mol
        + """`  
      
             $(document).ready(function () {
                let element = $("#container");
                let config = { backgroundColor: "white" };
                let viewer = $3Dmol.createViewer(element, config);
                viewer.addModel(pdb, "pdb");
                viewer.getModel(0).setStyle({}, { cartoon: { colorscheme:"whiteCarbon" } });
                viewer.zoomTo();
                viewer.render();
                viewer.zoom(0.8, 2000);
              })
        </script>
        </body></html>"""
    )

    return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


sample_code = """
from gradio_client import Client

client = Client("https://wwydmanski-esmfold.hf.space/")

def fold_huggingface(sequence, fname=None):
    result = client.predict(
                    sequence,	# str in 'sequence' Textbox component
                    api_name="/pdb")

    if fname is None:
        with tempfile.NamedTemporaryFile("w", delete=False, suffix=".pdb", prefix="esmfold_") as fp:
            fp.write(result)
            fp.flush()
            return fp.name
    else:
        with open(fname, "w") as fp:
            fp.write(result)
            fp.flush()
        return fname
pdb_fname = fold_huggingface("MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN")
"""

tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_usage=True).cuda()
model.esm = model.esm.half()
torch.backends.cuda.matmul.allow_tf32 = True

with gr.Blocks() as demo:
    gr.Markdown("# ESMFold")
    with gr.Row():
        with gr.Column():
            inp = gr.Textbox(lines=1, label="Sequence")
            name = gr.Dropdown(label="Choose a Sample Protein", value="Plastic degradation protein", choices=["Antifreeze protein", "Plastic degradation protein",  "AI Generated protein", "7-bladed propeller fold", "custom"])
            btn = gr.Button("🔬 Predict Structure ")
        
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Sample code")
            gr.Code(sample_code, label="Sample usage", language="python", interactive=False)

    with gr.Row():
        gr.Markdown("## Output")

    with gr.Row():
        with gr.Column():
            out = gr.Code(label="Output", interactive=False)
        with gr.Column():
            out_mol = gr.HTML(label="3D Structure")

    name.change(fn=suggest, inputs=name, outputs=inp)
    btn.click(fold_prot_locally, inputs=[inp], outputs=[out], api_name="pdb")
    out.change(fn=molecule, inputs=[out], outputs=[out_mol], api_name="3d_fold")

demo.launch()