Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, EsmForProteinFolding | |
from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein | |
from transformers.models.esm.openfold_utils.feats import atom14_to_atom37 | |
import torch | |
def convert_outputs_to_pdb(outputs): | |
final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs) | |
outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()} | |
final_atom_positions = final_atom_positions.cpu().numpy() | |
final_atom_mask = outputs["atom37_atom_exists"] | |
pdbs = [] | |
for i in range(outputs["aatype"].shape[0]): | |
aa = outputs["aatype"][i] | |
pred_pos = final_atom_positions[i] | |
mask = final_atom_mask[i] | |
resid = outputs["residue_index"][i] + 1 | |
pred = OFProtein( | |
aatype=aa, | |
atom_positions=pred_pos, | |
atom_mask=mask, | |
residue_index=resid, | |
b_factors=outputs["plddt"][i], | |
chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None, | |
) | |
pdbs.append(to_pdb(pred)) | |
return pdbs | |
def fold_prot_locally(sequence): | |
tokenized_input = tokenizer([sequence], return_tensors="pt", add_special_tokens=False)['input_ids'].cuda() | |
with torch.no_grad(): | |
output = model(tokenized_input) | |
pdb = convert_outputs_to_pdb(output) | |
return pdb | |
tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1") | |
model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_usage=True).cuda().half() | |
iface = gr.Interface(fn=fold_prot_locally, inputs="text", outputs="text") | |
iface.launch() |