Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2022 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Wav2Vec2-Conformer model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from torch.nn import functional as F | |
from transformers.activations import ACT2FN | |
from transformers.deepspeed import is_deepspeed_zero3_enabled | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
CausalLMOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
Wav2Vec2BaseModelOutput, | |
XVectorOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.models.wav2vec2_conformer.configuration_wav2vec2_conformer import Wav2Vec2ConformerConfig | |
logger = logging.get_logger(__name__) | |
_HIDDEN_STATES_START_POSITION = 2 | |
# General docstring | |
_CONFIG_FOR_DOC = "Wav2Vec2ConformerConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "facebook/wav2vec2-conformer-rope-large-960h-ft" | |
_EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] | |
# CTC docstring | |
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" | |
_CTC_EXPECTED_LOSS = 64.21 | |
WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/wav2vec2-conformer-rel-pos-large", | |
# See all Wav2Vec2Conformer models at https://huggingface.co/models?filter=wav2vec2-conformer | |
] | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`Wav2Vec2ConformerForPreTraining`], with potential hidden states and attentions. | |
Args: | |
loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official | |
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. | |
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): | |
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked | |
projected quantized states. | |
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): | |
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive | |
target vectors for contrastive loss. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): | |
The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . | |
diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): | |
The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
projected_states: torch.FloatTensor = None | |
projected_quantized_states: torch.FloatTensor = None | |
codevector_perplexity: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
contrastive_loss: Optional[torch.FloatTensor] = None | |
diversity_loss: Optional[torch.FloatTensor] = None | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.LongTensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for | |
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on | |
CPU as part of the preprocessing during training. | |
Args: | |
shape: The shape for which to compute masks. This should be of a tuple of size 2 where | |
the first element is the batch size and the second element is the length of the axis to span. | |
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of | |
independently generated mask spans of length `mask_length` is computed by | |
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the | |
actual percentage will be smaller. | |
mask_length: size of the mask | |
min_masks: minimum number of masked spans | |
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of | |
each batch dimension. | |
""" | |
batch_size, sequence_length = shape | |
if mask_length < 1: | |
raise ValueError("`mask_length` has to be bigger than 0.") | |
if mask_length > sequence_length: | |
raise ValueError( | |
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" | |
f" and `sequence_length`: {sequence_length}`" | |
) | |
# epsilon is used for probabilistic rounding | |
epsilon = np.random.rand(1).item() | |
def compute_num_masked_span(input_length): | |
"""Given input length, compute how many spans should be masked""" | |
num_masked_span = int(mask_prob * input_length / mask_length + epsilon) | |
num_masked_span = max(num_masked_span, min_masks) | |
# make sure num masked span <= sequence_length | |
if num_masked_span * mask_length > sequence_length: | |
num_masked_span = sequence_length // mask_length | |
# make sure num_masked span is also <= input_length - (mask_length - 1) | |
if input_length - (mask_length - 1) < num_masked_span: | |
num_masked_span = max(input_length - (mask_length - 1), 0) | |
return num_masked_span | |
# compute number of masked spans in batch | |
input_lengths = ( | |
attention_mask.sum(-1).detach().tolist() | |
if attention_mask is not None | |
else [sequence_length for _ in range(batch_size)] | |
) | |
# SpecAugment mask to fill | |
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) | |
spec_aug_mask_idxs = [] | |
max_num_masked_span = compute_num_masked_span(sequence_length) | |
if max_num_masked_span == 0: | |
return spec_aug_mask | |
for input_length in input_lengths: | |
# compute num of masked spans for this input | |
num_masked_span = compute_num_masked_span(input_length) | |
# get random indices to mask | |
spec_aug_mask_idx = np.random.choice( | |
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False | |
) | |
# pick first sampled index that will serve as a dummy index to pad vector | |
# to ensure same dimension for all batches due to probabilistic rounding | |
# Picking first sample just pads those vectors twice. | |
if len(spec_aug_mask_idx) == 0: | |
# this case can only happen if `input_length` is strictly smaller then | |
# `sequence_length` in which case the last token has to be a padding | |
# token which we can use as a dummy mask id | |
dummy_mask_idx = sequence_length - 1 | |
else: | |
dummy_mask_idx = spec_aug_mask_idx[0] | |
spec_aug_mask_idx = np.concatenate( | |
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] | |
) | |
spec_aug_mask_idxs.append(spec_aug_mask_idx) | |
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) | |
# expand masked indices to masked spans | |
spec_aug_mask_idxs = np.broadcast_to( | |
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) | |
# add offset to the starting indexes so that indexes now create a span | |
offsets = np.arange(mask_length)[None, None, :] | |
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( | |
batch_size, max_num_masked_span * mask_length | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
# ensure that we cannot have indices larger than sequence_length | |
if spec_aug_mask_idxs.max() > sequence_length - 1: | |
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 | |
# scatter indices to mask | |
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) | |
return spec_aug_mask | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices | |
def _sample_negative_indices( | |
features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None | |
): | |
""" | |
Sample `num_negatives` vectors from feature vectors. | |
""" | |
batch_size, sequence_length = features_shape | |
# generate indices of the positive vectors themselves, repeat them `num_negatives` times | |
sequence_length_range = np.arange(sequence_length) | |
# get `num_negatives` random vector indices from the same utterance | |
sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) | |
mask_time_indices = ( | |
mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) | |
) | |
for batch_idx in range(batch_size): | |
high = mask_time_indices[batch_idx].sum() - 1 | |
mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] | |
feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) | |
sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) | |
# avoid sampling the same positive vector, but keep the distribution uniform | |
sampled_indices[sampled_indices >= feature_indices] += 1 | |
# remap to actual indices | |
sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] | |
# correct for batch size | |
sampled_negative_indices[batch_idx] += batch_idx * sequence_length | |
return sampled_negative_indices | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerNoLayerNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerLayerNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = hidden_states.transpose(-2, -1) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = hidden_states.transpose(-2, -1) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerGroupNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerPositionalConvEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
config.hidden_size, | |
config.hidden_size, | |
kernel_size=config.num_conv_pos_embeddings, | |
padding=config.num_conv_pos_embeddings // 2, | |
groups=config.num_conv_pos_embedding_groups, | |
) | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed | |
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): | |
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) | |
deepspeed.zero.register_external_parameter(self, self.conv.weight_v) | |
deepspeed.zero.register_external_parameter(self, self.conv.weight_g) | |
else: | |
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) | |
self.padding = Wav2Vec2ConformerSamePadLayer(config.num_conv_pos_embeddings) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = hidden_states.transpose(1, 2) | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.padding(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
return hidden_states | |
class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module): | |
"""Rotary positional embedding | |
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf | |
""" | |
def __init__(self, config): | |
super().__init__() | |
dim = config.hidden_size // config.num_attention_heads | |
base = config.rotary_embedding_base | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self.cached_sequence_length = None | |
self.cached_rotary_positional_embedding = None | |
def forward(self, hidden_states): | |
sequence_length = hidden_states.shape[1] | |
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: | |
return self.cached_rotary_positional_embedding | |
self.cached_sequence_length = sequence_length | |
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) | |
embeddings = torch.cat((freqs, freqs), dim=-1) | |
cos_embeddings = embeddings.cos()[:, None, None, :] | |
sin_embeddings = embeddings.sin()[:, None, None, :] | |
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]) | |
return self.cached_rotary_positional_embedding | |
class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module): | |
"""Relative positional encoding module.""" | |
def __init__(self, config): | |
super().__init__() | |
self.max_len = config.max_source_positions | |
self.d_model = config.hidden_size | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)) | |
def extend_pe(self, x): | |
# Reset the positional encodings | |
if self.pe is not None: | |
# self.pe contains both positive and negative parts | |
# the length of self.pe is 2 * input_len - 1 | |
if self.pe.size(1) >= x.size(1) * 2 - 1: | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
# Suppose `i` is the position of query vector and `j` is the | |
# position of key vector. We use positive relative positions when keys | |
# are to the left (i>j) and negative relative positions otherwise (i<j). | |
pe_positive = torch.zeros(x.size(1), self.d_model) | |
pe_negative = torch.zeros(x.size(1), self.d_model) | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) | |
) | |
pe_positive[:, 0::2] = torch.sin(position * div_term) | |
pe_positive[:, 1::2] = torch.cos(position * div_term) | |
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
# Reverse the order of positive indices and concat both positive and | |
# negative indices. This is used to support the shifting trick | |
# as in https://arxiv.org/abs/1901.02860 | |
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
pe_negative = pe_negative[1:].unsqueeze(0) | |
pe = torch.cat([pe_positive, pe_negative], dim=1) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, hidden_states: torch.Tensor): | |
self.extend_pe(hidden_states) | |
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1 | |
end_idx = self.pe.size(1) // 2 + hidden_states.size(1) | |
relative_position_embeddings = self.pe[:, start_idx:end_idx] | |
return relative_position_embeddings | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerSamePadLayer(nn.Module): | |
def __init__(self, num_conv_pos_embeddings): | |
super().__init__() | |
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 | |
def forward(self, hidden_states): | |
if self.num_pad_remove > 0: | |
hidden_states = hidden_states[:, :, : -self.num_pad_remove] | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerFeatureEncoder(nn.Module): | |
"""Construct the features from raw audio waveform""" | |
def __init__(self, config): | |
super().__init__() | |
if config.feat_extract_norm == "group": | |
conv_layers = [Wav2Vec2ConformerGroupNormConvLayer(config, layer_id=0)] + [ | |
Wav2Vec2ConformerNoLayerNormConvLayer(config, layer_id=i + 1) | |
for i in range(config.num_feat_extract_layers - 1) | |
] | |
elif config.feat_extract_norm == "layer": | |
conv_layers = [ | |
Wav2Vec2ConformerLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) | |
] | |
else: | |
raise ValueError( | |
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" | |
) | |
self.conv_layers = nn.ModuleList(conv_layers) | |
self.gradient_checkpointing = False | |
self._requires_grad = True | |
def _freeze_parameters(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
self._requires_grad = False | |
def forward(self, input_values): | |
hidden_states = input_values[:, None] | |
# make sure hidden_states require grad for gradient_checkpointing | |
if self._requires_grad and self.training: | |
hidden_states.requires_grad = True | |
for conv_layer in self.conv_layers: | |
if self._requires_grad and self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(conv_layer), | |
hidden_states, | |
) | |
else: | |
hidden_states = conv_layer(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerFeatureProjection(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) | |
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) | |
self.dropout = nn.Dropout(config.feat_proj_dropout) | |
def forward(self, hidden_states): | |
# non-projected hidden states are needed for quantization | |
norm_hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.projection(norm_hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states, norm_hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerFeedForward(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.intermediate_dropout = nn.Dropout(config.activation_dropout) | |
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.output_dropout = nn.Dropout(config.hidden_dropout) | |
def forward(self, hidden_states): | |
hidden_states = self.intermediate_dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
hidden_states = self.intermediate_dropout(hidden_states) | |
hidden_states = self.output_dense(hidden_states) | |
hidden_states = self.output_dropout(hidden_states) | |
return hidden_states | |
class Wav2Vec2ConformerConvolutionModule(nn.Module): | |
"""Convolution block used in the conformer block""" | |
def __init__(self, config): | |
super().__init__() | |
if (config.conv_depthwise_kernel_size - 1) % 2 == 1: | |
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") | |
self.layer_norm = nn.LayerNorm(config.hidden_size) | |
self.pointwise_conv1 = torch.nn.Conv1d( | |
config.hidden_size, | |
2 * config.hidden_size, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=False, | |
) | |
self.glu = torch.nn.GLU(dim=1) | |
self.depthwise_conv = torch.nn.Conv1d( | |
config.hidden_size, | |
config.hidden_size, | |
config.conv_depthwise_kernel_size, | |
stride=1, | |
padding=(config.conv_depthwise_kernel_size - 1) // 2, | |
groups=config.hidden_size, | |
bias=False, | |
) | |
self.batch_norm = torch.nn.BatchNorm1d(config.hidden_size) | |
self.activation = ACT2FN[config.hidden_act] | |
self.pointwise_conv2 = torch.nn.Conv1d( | |
config.hidden_size, | |
config.hidden_size, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=False, | |
) | |
self.dropout = torch.nn.Dropout(config.conformer_conv_dropout) | |
def forward(self, hidden_states): | |
hidden_states = self.layer_norm(hidden_states) | |
# exchange the temporal dimension and the feature dimension | |
hidden_states = hidden_states.transpose(1, 2) | |
# GLU mechanism | |
# => (batch, 2*channel, dim) | |
hidden_states = self.pointwise_conv1(hidden_states) | |
# => (batch, channel, dim) | |
hidden_states = self.glu(hidden_states) | |
# 1D Depthwise Conv | |
hidden_states = self.depthwise_conv(hidden_states) | |
hidden_states = self.batch_norm(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = self.pointwise_conv2(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
return hidden_states | |
class Wav2Vec2ConformerSelfAttention(nn.Module): | |
"""Construct an Wav2Vec2ConformerSelfAttention object. | |
Can be enhanced with rotary or relative position embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.head_size = config.hidden_size // config.num_attention_heads | |
self.num_heads = config.num_attention_heads | |
self.position_embeddings_type = config.position_embeddings_type | |
self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) | |
self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) | |
self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) | |
self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(p=config.attention_dropout) | |
self.dropout_p = config.attention_dropout | |
self.is_causal = config.is_causal | |
if self.position_embeddings_type == "relative": | |
# linear transformation for positional encoding | |
self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False) | |
# these two learnable bias are used in matrix c and matrix d | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) | |
self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
relative_position_embeddings: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# self-attention mechanism | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
# make sure query/key states can be != value states | |
query_key_states = hidden_states | |
value_states = hidden_states | |
if self.position_embeddings_type == "rotary": | |
if relative_position_embeddings is None: | |
raise ValueError( | |
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'" | |
) | |
query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) | |
# project query_key_states and value_states | |
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) | |
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) | |
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) | |
# => (batch, head, time1, d_k) | |
query = query.transpose(1, 2) | |
key = key.transpose(1, 2) | |
value = value.transpose(1, 2) | |
with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False): | |
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=self.dropout_p, is_causal=self.is_causal) | |
probs = None | |
# # apply attention_mask if necessary | |
# if attention_mask is not None: | |
# scores = scores + attention_mask | |
# # => (batch, head, time1, time2) | |
# probs = torch.softmax(scores, dim=-1) | |
# probs = self.dropout(probs) | |
# # => (batch, head, time1, d_k) | |
# hidden_states = torch.matmul(probs, value) | |
# => (batch, time1, hidden_size) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) | |
hidden_states = self.linear_out(hidden_states) | |
return hidden_states, probs | |
def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) | |
cos = relative_position_embeddings[0, :sequence_length, ...] | |
sin = relative_position_embeddings[1, :sequence_length, ...] | |
# rotate hidden_states with rotary embeddings | |
hidden_states = hidden_states.transpose(0, 1) | |
rotated_states_begin = hidden_states[..., : self.head_size // 2] | |
rotated_states_end = hidden_states[..., self.head_size // 2 :] | |
rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) | |
hidden_states = (hidden_states * cos) + (rotated_states * sin) | |
hidden_states = hidden_states.transpose(0, 1) | |
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) | |
return hidden_states | |
def _apply_relative_embeddings(self, query, key, relative_position_embeddings): | |
# 1. project positional embeddings | |
# => (batch, head, 2*time1-1, d_k) | |
proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) | |
proj_relative_position_embeddings = proj_relative_position_embeddings.view( | |
relative_position_embeddings.size(0), -1, self.num_heads, self.head_size | |
) | |
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) | |
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) | |
# 2. Add bias to query | |
# => (batch, head, time1, d_k) | |
query = query.transpose(1, 2) | |
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) | |
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) | |
# 3. attention score: first compute matrix a and matrix c | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# => (batch, head, time1, time2) | |
scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) | |
# 4. then compute matrix b and matrix d | |
# => (batch, head, time1, 2*time1-1) | |
scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) | |
# 5. shift matrix b and matrix d | |
zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) | |
scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) | |
scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) | |
scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) | |
scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) | |
scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1] | |
# 6. sum matrices | |
# => (batch, head, time1, time2) | |
scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) | |
return scores | |
class Wav2Vec2ConformerEncoderLayer(nn.Module): | |
"""Conformer block based on https://arxiv.org/abs/2005.08100.""" | |
def __init__(self, config): | |
super().__init__() | |
embed_dim = config.hidden_size | |
dropout = config.attention_dropout | |
# Feed-forward 1 | |
self.ffn1_layer_norm = nn.LayerNorm(embed_dim) | |
self.ffn1 = Wav2Vec2ConformerFeedForward(config) | |
# Self-Attention | |
self.self_attn_layer_norm = nn.LayerNorm(embed_dim) | |
self.self_attn_dropout = torch.nn.Dropout(dropout) | |
self.self_attn = Wav2Vec2ConformerSelfAttention(config) | |
# Conformer Convolution | |
self.conv_module = Wav2Vec2ConformerConvolutionModule(config) | |
# Feed-forward 2 | |
self.ffn2_layer_norm = nn.LayerNorm(embed_dim) | |
self.ffn2 = Wav2Vec2ConformerFeedForward(config) | |
self.final_layer_norm = nn.LayerNorm(embed_dim) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask: Optional[torch.Tensor] = None, | |
relative_position_embeddings: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
): | |
hidden_states = hidden_states | |
# 1. Feed-Forward 1 layer | |
residual = hidden_states | |
hidden_states = self.ffn1_layer_norm(hidden_states) | |
hidden_states = self.ffn1(hidden_states) | |
hidden_states = hidden_states * 0.5 + residual | |
residual = hidden_states | |
# 2. Self-Attention layer | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, attn_weigts = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
relative_position_embeddings=relative_position_embeddings, | |
output_attentions=output_attentions, | |
) | |
hidden_states = self.self_attn_dropout(hidden_states) | |
hidden_states = hidden_states + residual | |
# 3. Convolutional Layer | |
residual = hidden_states | |
hidden_states = self.conv_module(hidden_states) | |
hidden_states = residual + hidden_states | |
# 4. Feed-Forward 2 Layer | |
residual = hidden_states | |
hidden_states = self.ffn2_layer_norm(hidden_states) | |
hidden_states = self.ffn2(hidden_states) | |
hidden_states = hidden_states * 0.5 + residual | |
hidden_states = self.final_layer_norm(hidden_states) | |
return hidden_states, attn_weigts | |
class Wav2Vec2ConformerEncoder(nn.Module): | |
def __init__(self, config, is_causal=False): | |
super().__init__() | |
config.is_causal = is_causal | |
self.config = config | |
if config.position_embeddings_type == "relative": | |
self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config) | |
elif config.position_embeddings_type == "rotary": | |
self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config) | |
else: | |
self.embed_positions = None | |
self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layers = nn.ModuleList([Wav2Vec2ConformerEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if attention_mask is not None: | |
# make sure padded tokens output 0 | |
hidden_states[~attention_mask] = 0.0 | |
# extend attention_mask | |
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) | |
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min | |
attention_mask = attention_mask.expand( | |
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] | |
) | |
hidden_states = self.dropout(hidden_states) | |
if self.embed_positions is not None: | |
relative_position_embeddings = self.embed_positions(hidden_states) | |
else: | |
relative_position_embeddings = None | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
for i, layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = np.random.uniform(0, 1) | |
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
if self.gradient_checkpointing and self.training: | |
# create gradient checkpointing function | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer), | |
hidden_states, | |
attention_mask, | |
relative_position_embeddings, | |
) | |
else: | |
layer_outputs = layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
relative_position_embeddings=relative_position_embeddings, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if skip_the_layer: | |
layer_outputs = (None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GumbelVectorQuantizer with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerGumbelVectorQuantizer(nn.Module): | |
""" | |
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH | |
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.num_groups = config.num_codevector_groups | |
self.num_vars = config.num_codevectors_per_group | |
if config.codevector_dim % self.num_groups != 0: | |
raise ValueError( | |
f"`config.codevector_dim {config.codevector_dim} must be divisible " | |
f"by `config.num_codevector_groups` {self.num_groups} for concatenation" | |
) | |
# storage for codebook variables (codewords) | |
self.codevectors = nn.Parameter( | |
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) | |
) | |
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) | |
# can be decayed for training | |
self.temperature = 2 | |
def _compute_perplexity(probs, mask=None): | |
if mask is not None: | |
mask_extended = mask.flatten()[:, None, None].expand(probs.shape) | |
probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) | |
marginal_probs = probs.sum(dim=0) / mask.sum() | |
else: | |
marginal_probs = probs.mean(dim=0) | |
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() | |
return perplexity | |
def forward(self, hidden_states, mask_time_indices=None): | |
batch_size, sequence_length, hidden_size = hidden_states.shape | |
# project to codevector dim | |
hidden_states = self.weight_proj(hidden_states) | |
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) | |
if self.training: | |
# sample code vector probs via gumbel in differentiateable way | |
codevector_probs = nn.functional.gumbel_softmax( | |
hidden_states.float(), tau=self.temperature, hard=True | |
).type_as(hidden_states) | |
# compute perplexity | |
codevector_soft_dist = torch.softmax( | |
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 | |
) | |
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) | |
else: | |
# take argmax in non-differentiable way | |
# comptute hard codevector distribution (one hot) | |
codevector_idx = hidden_states.argmax(dim=-1) | |
codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( | |
-1, codevector_idx.view(-1, 1), 1.0 | |
) | |
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) | |
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) | |
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) | |
# use probs to retrieve codevectors | |
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors | |
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) | |
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) | |
return codevectors, perplexity | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerAdapter(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# feature dim might need to be down-projected | |
if config.output_hidden_size != config.hidden_size: | |
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) | |
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) | |
else: | |
self.proj = self.proj_layer_norm = None | |
self.layers = nn.ModuleList(Wav2Vec2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers)) | |
self.layerdrop = config.layerdrop | |
def forward(self, hidden_states): | |
# down project hidden_states if necessary | |
if self.proj is not None and self.proj_layer_norm is not None: | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.proj_layer_norm(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
for layer in self.layers: | |
layerdrop_prob = np.random.random() | |
if not self.training or (layerdrop_prob > self.layerdrop): | |
hidden_states = layer(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Wav2Vec2Conformer | |
class Wav2Vec2ConformerAdapterLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
config.output_hidden_size, | |
2 * config.output_hidden_size, | |
config.adapter_kernel_size, | |
stride=config.adapter_stride, | |
padding=1, | |
) | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = nn.functional.glu(hidden_states, dim=1) | |
return hidden_states | |
class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Wav2Vec2ConformerConfig | |
base_model_prefix = "wav2vec2_conformer" | |
main_input_name = "input_values" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
# Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. | |
if isinstance(module, Wav2Vec2ConformerForPreTraining): | |
module.project_hid.reset_parameters() | |
module.project_q.reset_parameters() | |
module.project_hid._is_hf_initialized = True | |
module.project_q._is_hf_initialized = True | |
# gumbel softmax requires special init | |
elif isinstance(module, Wav2Vec2ConformerGumbelVectorQuantizer): | |
module.weight_proj.weight.data.normal_(mean=0.0, std=1) | |
module.weight_proj.bias.data.zero_() | |
nn.init.uniform_(module.codevectors) | |
elif isinstance(module, Wav2Vec2ConformerSelfAttention): | |
if hasattr(module, "pos_bias_u"): | |
nn.init.xavier_uniform_(module.pos_bias_u) | |
if hasattr(module, "pos_bias_v"): | |
nn.init.xavier_uniform_(module.pos_bias_v) | |
elif isinstance(module, Wav2Vec2ConformerPositionalConvEmbedding): | |
nn.init.normal_( | |
module.conv.weight, | |
mean=0, | |
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), | |
) | |
nn.init.constant_(module.conv.bias, 0) | |
elif isinstance(module, Wav2Vec2ConformerFeatureProjection): | |
k = math.sqrt(1 / module.projection.in_features) | |
nn.init.uniform_(module.projection.weight, a=-k, b=k) | |
nn.init.uniform_(module.projection.bias, a=-k, b=k) | |
elif isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Conv1d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) | |
nn.init.uniform_(module.bias, a=-k, b=k) | |
def _get_feat_extract_output_lengths( | |
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None | |
): | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter | |
def _conv_out_length(input_length, kernel_size, stride): | |
# 1D convolutional layer output length formula taken | |
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html | |
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 | |
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): | |
input_lengths = _conv_out_length(input_lengths, kernel_size, stride) | |
if add_adapter: | |
for _ in range(self.config.num_adapter_layers): | |
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) | |
return input_lengths | |
def _get_feature_vector_attention_mask( | |
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None | |
): | |
# Effectively attention_mask.sum(-1), but not inplace to be able to run | |
# on inference mode. | |
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] | |
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) | |
output_lengths = output_lengths.to(torch.long) | |
batch_size = attention_mask.shape[0] | |
attention_mask = torch.zeros( | |
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device | |
) | |
# these two operations makes sure that all values before the output lengths idxs are attended to | |
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 | |
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
return attention_mask | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (Wav2Vec2ConformerEncoder, Wav2Vec2ConformerFeatureEncoder)): | |
module.gradient_checkpointing = value | |
WAV2VEC2_CONFORMER_START_DOCSTRING = r""" | |
Wav2Vec2Conformer was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech | |
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael | |
Auli. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving etc.). | |
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a | |
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. | |
Parameters: | |
config ([`Wav2Vec2ConformerConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
WAV2VEC2_CONFORMER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): | |
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file | |
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install | |
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and | |
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, | |
1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
<Tip warning={true}> | |
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == | |
True`. For all models whose processor has `config.return_attention_mask == False`, such as | |
[wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large), | |
`attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For | |
such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware | |
that these models also yield slightly different results depending on whether `input_values` is padded or | |
not. | |
</Tip> | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel): | |
def __init__(self, config: Wav2Vec2ConformerConfig): | |
super().__init__(config) | |
self.config = config | |
self.feature_extractor = Wav2Vec2ConformerFeatureEncoder(config) | |
self.feature_projection = Wav2Vec2ConformerFeatureProjection(config) | |
# model only needs masking vector if mask prob is > 0.0 | |
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: | |
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) | |
self.encoder = Wav2Vec2ConformerEncoder(config) | |
self.adapter = Wav2Vec2ConformerAdapter(config) if config.add_adapter else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.freeze_feature_encoder | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states | |
def _mask_hidden_states( | |
self, | |
hidden_states: torch.FloatTensor, | |
mask_time_indices: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
): | |
""" | |
Masks extracted features along time axis and/or along feature axis according to | |
[SpecAugment](https://arxiv.org/abs/1904.08779). | |
""" | |
# `config.apply_spec_augment` can set masking to False | |
if not getattr(self.config, "apply_spec_augment", True): | |
return hidden_states | |
# generate indices & apply SpecAugment along time axis | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
if mask_time_indices is not None: | |
# apply SpecAugment along time axis with given mask_time_indices | |
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
elif self.config.mask_time_prob > 0 and self.training: | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
mask_prob=self.config.mask_time_prob, | |
mask_length=self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=self.config.mask_time_min_masks, | |
) | |
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) | |
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
if self.config.mask_feature_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along feature axis | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
mask_prob=self.config.mask_feature_prob, | |
mask_length=self.config.mask_feature_length, | |
min_masks=self.config.mask_feature_min_masks, | |
) | |
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) | |
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) | |
hidden_states[mask_feature_indices] = 0 | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.forward with wav2vec2->wav2vec2_conformer | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
mask_time_indices: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Wav2Vec2BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
extract_features = self.feature_extractor(input_values) | |
extract_features = extract_features.transpose(1, 2) | |
if attention_mask is not None: | |
# compute reduced attention_mask corresponding to feature vectors | |
attention_mask = self._get_feature_vector_attention_mask( | |
extract_features.shape[1], attention_mask, add_adapter=False | |
) | |
hidden_states, extract_features = self.feature_projection(extract_features) | |
hidden_states = self._mask_hidden_states( | |
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask | |
) | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
if self.adapter is not None: | |
hidden_states = self.adapter(hidden_states) | |
if not return_dict: | |
return (hidden_states, extract_features) + encoder_outputs[1:] | |
return Wav2Vec2BaseModelOutput( | |
last_hidden_state=hidden_states, | |
extract_features=extract_features, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel): | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer | |
def __init__(self, config: Wav2Vec2ConformerConfig): | |
super().__init__(config) | |
self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) | |
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) | |
self.quantizer = Wav2Vec2ConformerGumbelVectorQuantizer(config) | |
self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) | |
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.set_gumbel_temperature | |
def set_gumbel_temperature(self, temperature: int): | |
""" | |
Set the Gumbel softmax temperature to a given value. Only necessary for training | |
""" | |
self.quantizer.temperature = temperature | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.freeze_feature_encoder with wav2vec2->wav2vec2_conformer | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wav2vec2_conformer.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits | |
def compute_contrastive_logits( | |
target_features: torch.FloatTensor, | |
negative_features: torch.FloatTensor, | |
predicted_features: torch.FloatTensor, | |
temperature: int = 0.1, | |
): | |
""" | |
Compute logits for contrastive loss based using cosine similarity as the distance measure between | |
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. | |
""" | |
target_features = torch.cat([target_features, negative_features], dim=0) | |
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( | |
target_features | |
) | |
# apply temperature | |
logits = logits / temperature | |
return logits | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,wav2vec2_conformer-base->wav2vec2-conformer-rel-pos-large | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
mask_time_indices: Optional[torch.BoolTensor] = None, | |
sampled_negative_indices: Optional[torch.BoolTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]: | |
r""" | |
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict | |
masked extracted features in *config.proj_codevector_dim* space. | |
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): | |
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. | |
Required input for pre-training. | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining | |
>>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import ( | |
... _compute_mask_indices, | |
... _sample_negative_indices, | |
... ) | |
>>> from datasets import load_dataset | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") | |
>>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 | |
>>> # compute masked indices | |
>>> batch_size, raw_sequence_length = input_values.shape | |
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() | |
>>> mask_time_indices = _compute_mask_indices( | |
... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 | |
... ) | |
>>> sampled_negative_indices = _sample_negative_indices( | |
... features_shape=(batch_size, sequence_length), | |
... num_negatives=model.config.num_negatives, | |
... mask_time_indices=mask_time_indices, | |
... ) | |
>>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) | |
>>> sampled_negative_indices = torch.tensor( | |
... data=sampled_negative_indices, device=input_values.device, dtype=torch.long | |
... ) | |
>>> with torch.no_grad(): | |
... outputs = model(input_values, mask_time_indices=mask_time_indices) | |
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) | |
>>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) | |
>>> # show that cosine similarity is much higher than random | |
>>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 | |
tensor(True) | |
>>> # for contrastive loss training model should be put into train mode | |
>>> model = model.train() | |
>>> loss = model( | |
... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices | |
... ).loss | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if mask_time_indices is not None: | |
mask_time_indices = mask_time_indices.to(torch.bool) | |
outputs = self.wav2vec2_conformer( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
mask_time_indices=mask_time_indices, | |
return_dict=return_dict, | |
) | |
# 1. project all transformed features (including masked) to final vq dim | |
transformer_features = self.project_hid(outputs[0]) | |
# 2. quantize all (unmasked) extracted features and project to final vq dim | |
extract_features = self.dropout_features(outputs[1]) | |
if attention_mask is not None: | |
# compute reduced attention_mask correponding to feature vectors | |
attention_mask = self._get_feature_vector_attention_mask( | |
extract_features.shape[1], attention_mask, add_adapter=False | |
) | |
quantized_features, codevector_perplexity = self.quantizer( | |
extract_features, mask_time_indices=mask_time_indices | |
) | |
quantized_features = self.project_q(quantized_features) | |
loss = contrastive_loss = diversity_loss = None | |
if sampled_negative_indices is not None: | |
batch_size, sequence_length, hidden_size = quantized_features.shape | |
# for training, we sample negatives | |
# 3. sample K negatives (distractors) quantized states for contrastive loss | |
# if attention_mask is passed, make sure that padded feature vectors cannot be sampled | |
# sample negative quantized vectors BTC => (BxT)C | |
negative_quantized_features = quantized_features.view(-1, hidden_size)[ | |
sampled_negative_indices.long().view(-1) | |
] | |
negative_quantized_features = negative_quantized_features.view( | |
batch_size, sequence_length, -1, hidden_size | |
).permute(2, 0, 1, 3) | |
# 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` | |
# of equation (3) in https://arxiv.org/pdf/2006.11477.pdf | |
logits = self.compute_contrastive_logits( | |
quantized_features[None, :], | |
negative_quantized_features, | |
transformer_features, | |
self.config.contrastive_logits_temperature, | |
) | |
# 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), | |
# its cosine similarity will be masked | |
neg_is_pos = (quantized_features == negative_quantized_features).all(-1) | |
if neg_is_pos.any(): | |
logits[1:][neg_is_pos] = float("-inf") | |
# 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = | |
# -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) | |
logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) | |
target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() | |
contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") | |
# 7. compute diversity loss: \mathbf{L}_d | |
num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups | |
diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() | |
# 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d | |
loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss | |
if not return_dict: | |
if loss is not None: | |
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] | |
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] | |
return Wav2Vec2ConformerForPreTrainingOutput( | |
loss=loss, | |
projected_states=transformer_features, | |
projected_quantized_states=quantized_features, | |
codevector_perplexity=codevector_perplexity, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
contrastive_loss=contrastive_loss, | |
diversity_loss=diversity_loss, | |
) | |
class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel): | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer | |
def __init__(self, config): | |
super().__init__(config) | |
self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) | |
self.dropout = nn.Dropout(config.final_dropout) | |
if config.vocab_size is None: | |
raise ValueError( | |
f"You are trying to instantiate {self.__class__} with a configuration that " | |
"does not define the vocabulary size of the language model head. Please " | |
"instantiate the model as follows: `Wav2Vec2ConformerForCTC.from_pretrained(..., vocab_size=vocab_size)`. " | |
"or define `vocab_size` of your model's configuration." | |
) | |
output_hidden_size = ( | |
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size | |
) | |
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wav2vec2_conformer.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, CausalLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): | |
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to | |
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. | |
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., | |
config.vocab_size - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.wav2vec2_conformer( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
if labels.max() >= self.config.vocab_size: | |
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") | |
# retrieve loss input_lengths from attention_mask | |
attention_mask = ( | |
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) | |
) | |
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) | |
# assuming that padded tokens are filled with -100 | |
# when not being attended to | |
labels_mask = labels >= 0 | |
target_lengths = labels_mask.sum(-1) | |
flattened_targets = labels.masked_select(labels_mask) | |
# ctc_loss doesn't support fp16 | |
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) | |
with torch.backends.cudnn.flags(enabled=False): | |
loss = nn.functional.ctc_loss( | |
log_probs, | |
flattened_targets, | |
input_lengths, | |
target_lengths, | |
blank=self.config.pad_token_id, | |
reduction=self.config.ctc_loss_reduction, | |
zero_infinity=self.config.ctc_zero_infinity, | |
) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutput( | |
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions | |
) | |
class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedModel): | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer | |
def __init__(self, config): | |
super().__init__(config) | |
if hasattr(config, "add_adapter") and config.add_adapter: | |
raise ValueError( | |
"Sequence classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" | |
) | |
self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wav2vec2_conformer.feature_extractor._freeze_parameters() | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wav2vec2_conformer.parameters(): | |
param.requires_grad = False | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.wav2vec2_conformer( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
hidden_states = self.projector(hidden_states) | |
if attention_mask is None: | |
pooled_output = hidden_states.mean(dim=1) | |
else: | |
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) | |
hidden_states[~padding_mask] = 0.0 | |
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedModel): | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER | |
def __init__(self, config): | |
super().__init__(config) | |
if hasattr(config, "add_adapter") and config.add_adapter: | |
raise ValueError( | |
"Audio frame classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" | |
) | |
self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.num_labels = config.num_labels | |
self.init_weights() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wav2vec2_conformer.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_base_model with wav2vec2->wav2vec2_conformer | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wav2vec2_conformer.parameters(): | |
param.requires_grad = False | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->wav2vec2_conformer | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.wav2vec2_conformer( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss | |
class AMSoftmaxLoss(nn.Module): | |
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): | |
super(AMSoftmaxLoss, self).__init__() | |
self.scale = scale | |
self.margin = margin | |
self.num_labels = num_labels | |
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) | |
self.loss = nn.CrossEntropyLoss() | |
def forward(self, hidden_states, labels): | |
labels = labels.flatten() | |
weight = nn.functional.normalize(self.weight, dim=0) | |
hidden_states = nn.functional.normalize(hidden_states, dim=1) | |
cos_theta = torch.mm(hidden_states, weight) | |
psi = cos_theta - self.margin | |
onehot = nn.functional.one_hot(labels, self.num_labels) | |
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) | |
loss = self.loss(logits, labels) | |
return loss | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer | |
class TDNNLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] | |
self.out_conv_dim = config.tdnn_dim[layer_id] | |
self.kernel_size = config.tdnn_kernel[layer_id] | |
self.dilation = config.tdnn_dilation[layer_id] | |
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) | |
self.activation = nn.ReLU() | |
def forward(self, hidden_states): | |
hidden_states = hidden_states.unsqueeze(1) | |
hidden_states = nn.functional.unfold( | |
hidden_states, | |
(self.kernel_size, self.in_conv_dim), | |
stride=(1, self.in_conv_dim), | |
dilation=(self.dilation, 1), | |
) | |
hidden_states = hidden_states.transpose(1, 2) | |
hidden_states = self.kernel(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) | |
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] | |
self.tdnn = nn.ModuleList(tdnn_layers) | |
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) | |
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) | |
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) | |
self.init_weights() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_feature_encoder with wav2vec2->wav2vec2_conformer | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wav2vec2_conformer.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_base_model with wav2vec2->wav2vec2_conformer | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wav2vec2_conformer.parameters(): | |
param.requires_grad = False | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector._get_tdnn_output_lengths with wav2vec2->wav2vec2_conformer | |
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): | |
""" | |
Computes the output length of the TDNN layers | |
""" | |
def _conv_out_length(input_length, kernel_size, stride): | |
# 1D convolutional layer output length formula taken | |
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html | |
return (input_length - kernel_size) // stride + 1 | |
for kernel_size in self.config.tdnn_kernel: | |
input_lengths = _conv_out_length(input_lengths, kernel_size, 1) | |
return input_lengths | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, XVectorOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.wav2vec2_conformer( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
hidden_states = self.projector(hidden_states) | |
for tdnn_layer in self.tdnn: | |
hidden_states = tdnn_layer(hidden_states) | |
# Statistic Pooling | |
if attention_mask is None: | |
mean_features = hidden_states.mean(dim=1) | |
std_features = hidden_states.std(dim=1) | |
else: | |
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) | |
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) | |
mean_features = [] | |
std_features = [] | |
for i, length in enumerate(tdnn_output_lengths): | |
mean_features.append(hidden_states[i, :length].mean(dim=0)) | |
std_features.append(hidden_states[i, :length].std(dim=0)) | |
mean_features = torch.stack(mean_features) | |
std_features = torch.stack(std_features) | |
statistic_pooling = torch.cat([mean_features, std_features], dim=-1) | |
output_embeddings = self.feature_extractor(statistic_pooling) | |
logits = self.classifier(output_embeddings) | |
loss = None | |
if labels is not None: | |
loss = self.objective(logits, labels) | |
if not return_dict: | |
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return XVectorOutput( | |
loss=loss, | |
logits=logits, | |
embeddings=output_embeddings, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |