Spaces:
Paused
Paused
File size: 3,652 Bytes
87b2711 7c99e50 1ca62bc 87b2711 f52050f 7c99e50 f52050f ea69d06 6082f24 f52050f 7c99e50 6082f24 f52050f 2fecabe 6082f24 f52050f ec4bd6c f52050f ec4bd6c f52050f 87b2711 f52050f 87b2711 f52050f 7c99e50 f52050f 6082f24 f52050f 6082f24 f52050f 6082f24 f52050f 87b2711 4222109 6082f24 4222109 7c99e50 6082f24 7c99e50 6082f24 7c99e50 4222109 6082f24 7c99e50 6082f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import os
import gradio as gr
import numpy as np
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from ast import literal_eval
# Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# Define your prompts
other_benifits = '''Extract the following information in the given format:
{'other_benefits_and_information': {
'401k eru: {'This Period':'', 'Year-to-Date':''}},
'quota summary':
{
'sick:': '',
'vacation:': '',
}
'payment method': 'eg. Direct payment',
'Amount': 'eg. 12.99'
}
'''
tax_deductions = '''Extract the following information in the given format:
{
'tax_deductions': {
'federal:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
'california:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee disability tax:': {'Amount':'', 'Year-To_Date':""}}},
}
'''
def demo(image_path, prompt):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path, # Use the file path here
},
{"type": "text", "text": prompt},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1500)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Handle output text to convert it into JSON
try:
almost_json = output_text[0].split('\n')[-1].split('\n')[0]
json = literal_eval(almost_json)
except:
json = output_text[0] # Return raw output if JSON parsing fails
return json
def process_document(image):
# Save the uploaded image temporarily and get its path
image_path = image.name # Gradio provides an interface to access the file name
# Process the image with your model
one = demo(image_path, other_benifits)
two = demo(image_path, tax_deductions)
json_op = {
"tax_deductions": one,
"other_benifits": two
}
return json_op
# Create Gradio interface
demo = gr.Interface(
fn=process_document,
inputs="image", # Gradio will handle the image input
outputs="json",
title="PaySlip_Demo_Model",
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
cache_examples=False
)
demo.launch()
|