Spaces:
Paused
Paused
text output
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from qwen_vl_utils import process_vision_info
|
|
7 |
import torch
|
8 |
from ast import literal_eval
|
9 |
from PIL import Image
|
|
|
10 |
|
11 |
# Load the model on the available device(s)
|
12 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -43,6 +44,20 @@ tax_deductions = '''Extract the following information in the given format:
|
|
43 |
}
|
44 |
'''
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def process_function(image_path, prompt):
|
47 |
messages = [
|
48 |
{
|
@@ -100,8 +115,8 @@ def process_document(image):
|
|
100 |
image_path = tmp_file.name # Get the path of the saved file
|
101 |
|
102 |
# Process the image with your model
|
103 |
-
one = process_function(image_path, other_benifits)
|
104 |
-
two = process_function(image_path, tax_deductions)
|
105 |
|
106 |
|
107 |
# Optionally, you can delete the temporary file after use
|
@@ -111,134 +126,15 @@ def process_document(image):
|
|
111 |
|
112 |
|
113 |
|
114 |
-
|
115 |
-
# with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
116 |
-
# image = Image.fromarray(image)
|
117 |
-
# image.save(tmp_file.name)
|
118 |
-
# image_path = tmp_file.name
|
119 |
-
|
120 |
-
|
121 |
-
# messages = [
|
122 |
-
# {
|
123 |
-
# "role": "user",
|
124 |
-
# "content": [
|
125 |
-
# {
|
126 |
-
# "type": "image",
|
127 |
-
# "image": image_path,
|
128 |
-
# },
|
129 |
-
# {"type": "text", "text": '''Extract the following information in the given format:
|
130 |
-
# {
|
131 |
-
# 'tax_deductions': {
|
132 |
-
# 'federal:': {
|
133 |
-
# 'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
134 |
-
# 'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
|
135 |
-
# 'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
|
136 |
-
# 'california:': {
|
137 |
-
# 'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
138 |
-
# 'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
|
139 |
-
# }'''},
|
140 |
-
# ],
|
141 |
-
# }
|
142 |
-
# ]
|
143 |
-
# text = processor.apply_chat_template(
|
144 |
-
# messages, tokenize=False, add_generation_prompt=True
|
145 |
-
# )
|
146 |
-
# image_inputs, video_inputs = process_vision_info(messages)
|
147 |
-
# inputs = processor(
|
148 |
-
# text=[text],
|
149 |
-
# images=image_inputs,
|
150 |
-
# videos=video_inputs,
|
151 |
-
# padding=True,
|
152 |
-
# return_tensors="pt",
|
153 |
-
# )
|
154 |
-
# inputs = inputs.to("cuda")
|
155 |
-
# generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
156 |
-
# generated_ids_trimmed = [
|
157 |
-
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
158 |
-
# ]
|
159 |
-
# output_text = processor.batch_decode(
|
160 |
-
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
161 |
-
# )
|
162 |
-
# try:
|
163 |
-
# almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
|
164 |
-
|
165 |
-
# json = literal_eval(almost_json)
|
166 |
-
# except:
|
167 |
-
# try:
|
168 |
-
# almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
|
169 |
-
# json = literal_eval(almost_json)
|
170 |
-
# except:
|
171 |
-
# json = output_text[0]
|
172 |
-
|
173 |
-
# messages = [
|
174 |
-
# {
|
175 |
-
# "role": "user",
|
176 |
-
# "content": [
|
177 |
-
# {
|
178 |
-
# "type": "image",
|
179 |
-
# "image": image_path,
|
180 |
-
# },
|
181 |
-
# {"type": "text", "text": '''Extract the following information in the given format:
|
182 |
-
# {'other_benefits_and_information': {
|
183 |
-
# '401k eru: {'This Period':'', 'Year-to-Date':''}},
|
184 |
-
# 'quota summary':
|
185 |
-
# {
|
186 |
-
# 'sick:': '',
|
187 |
-
# 'vacation:': '',
|
188 |
-
# }
|
189 |
-
# 'payment method': 'eg. Direct payment',
|
190 |
-
# 'Amount': 'eg. 12.99'
|
191 |
-
# }'''},
|
192 |
-
# ],
|
193 |
-
# }
|
194 |
-
# ]
|
195 |
-
# text = processor.apply_chat_template(
|
196 |
-
# messages, tokenize=False, add_generation_prompt=True
|
197 |
-
# )
|
198 |
-
# image_inputs, video_inputs = process_vision_info(messages)
|
199 |
-
# inputs = processor(
|
200 |
-
# text=[text],
|
201 |
-
# images=image_inputs,
|
202 |
-
# videos=video_inputs,
|
203 |
-
# padding=True,
|
204 |
-
# return_tensors="pt",
|
205 |
-
# )
|
206 |
-
# inputs = inputs.to("cuda")
|
207 |
-
# # Inference: Generation of the output
|
208 |
-
# generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
209 |
-
# generated_ids_trimmed = [
|
210 |
-
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
211 |
-
# ]
|
212 |
-
# output_text = processor.batch_decode(
|
213 |
-
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
214 |
-
# )
|
215 |
-
# try:
|
216 |
-
# almost_json_2 = output_text[0].split('```\n')[-1].split('\n```')[0]
|
217 |
-
|
218 |
-
# json_2 = literal_eval(almost_json_2)
|
219 |
-
# except:
|
220 |
-
# try:
|
221 |
-
# almost_json_2 = output_text[0].split('```json\n')[-1].split('\n```')[0]
|
222 |
-
# json_2 = literal_eval(almost_json_2)
|
223 |
-
# except:
|
224 |
-
# json_2 = output_text[0]
|
225 |
-
|
226 |
-
# # json_op = {
|
227 |
-
# # "tax_deductions": json,
|
228 |
-
# # "other_benifits": json_2
|
229 |
-
# # }
|
230 |
-
# # # Optionally, you can delete the temporary file after use
|
231 |
-
# os.remove(image_path)
|
232 |
-
|
233 |
-
# return json, json_2
|
234 |
|
235 |
# Create Gradio interface
|
236 |
demo = gr.Interface(
|
237 |
fn=process_document,
|
238 |
inputs="image", # Gradio will handle the image input
|
239 |
outputs=[
|
240 |
-
gr.
|
241 |
-
gr.
|
242 |
],
|
243 |
title="<div style='text-align: center;'>Information Extraction From PaySlip</div>",
|
244 |
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
|
|
|
7 |
import torch
|
8 |
from ast import literal_eval
|
9 |
from PIL import Image
|
10 |
+
import json
|
11 |
|
12 |
# Load the model on the available device(s)
|
13 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
44 |
}
|
45 |
'''
|
46 |
|
47 |
+
def format_nested_dict(data, indent=0):
|
48 |
+
formatted_str = ""
|
49 |
+
indent_str = " " * indent # Indentation for the current level
|
50 |
+
|
51 |
+
for key, value in data.items():
|
52 |
+
# If value is a dictionary, recurse deeper
|
53 |
+
if isinstance(value, dict):
|
54 |
+
formatted_str += f"{indent_str}{key}:\n"
|
55 |
+
formatted_str += format_nested_dict(value, indent + 1)
|
56 |
+
else:
|
57 |
+
formatted_str += f"{indent_str}{key}: {value}\n"
|
58 |
+
|
59 |
+
return formatted_str
|
60 |
+
|
61 |
def process_function(image_path, prompt):
|
62 |
messages = [
|
63 |
{
|
|
|
115 |
image_path = tmp_file.name # Get the path of the saved file
|
116 |
|
117 |
# Process the image with your model
|
118 |
+
one = format_nested_dict(process_function(image_path, other_benifits))
|
119 |
+
two = format_nested_dict(process_function(image_path, tax_deductions))
|
120 |
|
121 |
|
122 |
# Optionally, you can delete the temporary file after use
|
|
|
126 |
|
127 |
|
128 |
|
129 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
# Create Gradio interface
|
132 |
demo = gr.Interface(
|
133 |
fn=process_document,
|
134 |
inputs="image", # Gradio will handle the image input
|
135 |
outputs=[
|
136 |
+
gr.Textbox(label="Tax Deductions Information"), # First output box with heading
|
137 |
+
gr.Textbox(label="Other Benefits and Information") # Second output box with heading
|
138 |
],
|
139 |
title="<div style='text-align: center;'>Information Extraction From PaySlip</div>",
|
140 |
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
|