Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from sklearn.preprocessing import LabelEncoder, StandardScaler | |
from nltk.sentiment.vader import SentimentIntensityAnalyzer | |
import nltk | |
import torch | |
# Download VADER lexicon for sentiment analysis | |
nltk.download('vader_lexicon') | |
# Load model and tokenizer from Hugging Face | |
tokenizer = AutoTokenizer.from_pretrained("xeroISB/ServiceNowMTTR") | |
model = AutoModelForSequenceClassification.from_pretrained("xeroISB/ServiceNowMTTR") | |
# Move model to GPU if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Initialize LabelEncoders | |
label_encoders = { | |
'impact': LabelEncoder(), | |
'priority': LabelEncoder(), | |
'category': LabelEncoder(), | |
'urgency': LabelEncoder() | |
} | |
# Function to preprocess input data | |
def preprocess_input(short_description, impact, priority, category, urgency): | |
# Encode categorical features | |
input_data = pd.DataFrame({ | |
'short_description': [short_description], | |
'impact': [impact], | |
'priority': [priority], | |
'category': [category], | |
'urgency': [urgency] | |
}) | |
for column in ['impact', 'priority', 'category', 'urgency']: | |
input_data[column] = label_encoders[column].fit_transform(input_data[column]) | |
short_description = input_data['short_description'].iloc[0].lower() | |
# Tokenize text data using the new tokenizer | |
inputs = tokenizer(short_description, return_tensors='pt', padding='max_length', truncation=True, max_length=50) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Feature engineering: Add sentiment score | |
sid = SentimentIntensityAnalyzer() | |
input_data['sentiment_score'] = input_data['short_description'].apply(lambda x: sid.polarity_scores(x)['compound']) | |
# Normalize numerical features | |
numerical_features = input_data[['impact', 'priority', 'category', 'urgency', 'sentiment_score']] | |
scaler = StandardScaler() | |
scaled_numerical_features = scaler.fit_transform(numerical_features) | |
return inputs, scaled_numerical_features | |
# Function to make predictions | |
def predict(short_description, impact, priority, category, urgency): | |
inputs, scaled_numerical_features = preprocess_input(short_description, impact, priority, category, urgency) | |
# Make prediction | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_label = torch.argmax(logits, axis=1).item() | |
sentiment_score = scaled_numerical_features[0][-1] | |
return predicted_label, sentiment_score | |
# Define Gradio interface | |
inputs = [ | |
gr.components.Textbox(lines=2, placeholder="Enter short description...", label="Short Description"), | |
gr.components.Textbox(lines=1, placeholder="Enter impact...", label="Impact (e.g., '2 - Medium')"), | |
gr.components.Textbox(lines=1, placeholder="Enter priority...", label="Priority (e.g., '2 - Medium')"), | |
gr.components.Textbox(lines=1, placeholder="Enter category...", label="Category (e.g., 'Network')"), | |
gr.components.Textbox(lines=1, placeholder="Enter urgency...", label="Urgency (e.g., '1 - High')") | |
] | |
outputs = [ | |
gr.components.Textbox(label="Predicted Duration Bin 0 : 1-2 hours, 1: 3-4 hours, 2: 4-8 hours, 3: More than 8 hours"), | |
gr.components.Textbox(label="Sentiment Score") | |
] | |
interface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="Incident Duration Predictor", description="Predict the duration bin and sentiment score based on issue description and related features.") | |
# Launch the interface | |
interface.launch() | |