Spaces:
Runtime error
Runtime error
File size: 3,690 Bytes
0f6aa00 976bdda 0f6aa00 976bdda 0f6aa00 976bdda 0f6aa00 976bdda 5163bee 0f6aa00 5163bee 2df3893 5163bee 976bdda 0f6aa00 2753f4c 976bdda 0f6aa00 976bdda 0f6aa00 3efad8a 0f6aa00 3759ad1 3efad8a 0f6aa00 3759ad1 0f6aa00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import numpy as np
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sklearn.preprocessing import LabelEncoder, StandardScaler
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import nltk
import torch
# Download VADER lexicon for sentiment analysis
nltk.download('vader_lexicon')
# Load model and tokenizer from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("xeroISB/ServiceNowMTTR")
model = AutoModelForSequenceClassification.from_pretrained("xeroISB/ServiceNowMTTR")
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Initialize LabelEncoders
label_encoders = {
'impact': LabelEncoder(),
'priority': LabelEncoder(),
'category': LabelEncoder(),
'urgency': LabelEncoder()
}
# Function to preprocess input data
def preprocess_input(short_description, impact, priority, category, urgency):
# Encode categorical features
input_data = pd.DataFrame({
'short_description': [short_description],
'impact': [impact],
'priority': [priority],
'category': [category],
'urgency': [urgency]
})
for column in ['impact', 'priority', 'category', 'urgency']:
input_data[column] = label_encoders[column].fit_transform(input_data[column])
short_description = input_data['short_description'].iloc[0].lower()
# Tokenize text data using the new tokenizer
inputs = tokenizer(short_description, return_tensors='pt', padding='max_length', truncation=True, max_length=50)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Feature engineering: Add sentiment score
sid = SentimentIntensityAnalyzer()
input_data['sentiment_score'] = input_data['short_description'].apply(lambda x: sid.polarity_scores(x)['compound'])
# Normalize numerical features
numerical_features = input_data[['impact', 'priority', 'category', 'urgency', 'sentiment_score']]
scaler = StandardScaler()
scaled_numerical_features = scaler.fit_transform(numerical_features)
return inputs, scaled_numerical_features
# Function to make predictions
def predict(short_description, impact, priority, category, urgency):
inputs, scaled_numerical_features = preprocess_input(short_description, impact, priority, category, urgency)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_label = torch.argmax(logits, axis=1).item()
sentiment_score = scaled_numerical_features[0][-1]
return predicted_label, sentiment_score
# Define Gradio interface
inputs = [
gr.components.Textbox(lines=2, placeholder="Enter short description...", label="Short Description"),
gr.components.Textbox(lines=1, placeholder="Enter impact...", label="Impact (e.g., '2 - Medium')"),
gr.components.Textbox(lines=1, placeholder="Enter priority...", label="Priority (e.g., '2 - Medium')"),
gr.components.Textbox(lines=1, placeholder="Enter category...", label="Category (e.g., 'Network')"),
gr.components.Textbox(lines=1, placeholder="Enter urgency...", label="Urgency (e.g., '1 - High')")
]
outputs = [
gr.components.Textbox(label="Predicted Duration Bin 0 : 1-2 hours, 1: 3-4 hours, 2: 4-8 hours, 3: More than 8 hours"),
gr.components.Textbox(label="Sentiment Score")
]
interface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="Incident Duration Predictor", description="Predict the duration bin and sentiment score based on issue description and related features.")
# Launch the interface
interface.launch()
|