Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from plotly import graph_objects as go | |
import plotly.io as pio | |
import plotly.express as px | |
# @TODO: Add a custom template to the plotly figure | |
""" | |
pio.templates["custom"] = go.layout.Template() | |
pio.templates["custom"].layout = dict( | |
plot_bgcolor="#bde5ec", paper_bgcolor="#bbd5da" | |
) | |
# Set the default theme to "plotly_dark" | |
pio.templates.default = "custom" | |
""" | |
def process_dataset(): | |
""" | |
Process the dataset and perform the following operations: | |
1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files. | |
2. Convert the total size to petabytes and format it to two decimal places. | |
3. Capitalize the 'type' column in the file_counts_and_sizes dataframe. | |
4. Rename the columns in the file_counts_and_sizes dataframe. | |
5. Sort the file_counts_and_sizes dataframe by total size in descending order. | |
6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe. | |
7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes. | |
""" | |
file_counts_and_sizes = pd.read_parquet( | |
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_counts_and_sizes.parquet" | |
) | |
repo_by_size_df = pd.read_parquet( | |
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size.parquet" | |
) | |
unique_files_df = pd.read_parquet( | |
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size_file_dedupe.parquet" | |
) | |
file_extensions = pd.read_parquet( | |
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions.parquet" | |
) | |
# read the file_extensions_by_month.parquet file | |
file_extensions_by_month = pd.read_parquet( | |
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions_by_month.parquet" | |
) | |
# drop any nas | |
file_extensions_by_month = file_extensions_by_month.dropna() | |
file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize() | |
# update the column name to 'total size (PB)' | |
file_counts_and_sizes = file_counts_and_sizes.rename( | |
columns={ | |
"type": "Repository Type", | |
"num_files": "Number of Files", | |
"total_size": "Total Size (PBs)", | |
} | |
) | |
file_counts_and_sizes = file_counts_and_sizes.drop(columns=["Number of Files"]) | |
# sort the dataframe by total size in descending order | |
file_counts_and_sizes = file_counts_and_sizes.sort_values( | |
by="Total Size (PBs)", ascending=False | |
) | |
# drop nas from the extension column | |
file_extensions = file_extensions.dropna(subset=["extension"]) | |
return ( | |
repo_by_size_df, | |
unique_files_df, | |
file_counts_and_sizes, | |
file_extensions, | |
file_extensions_by_month, | |
) | |
def cumulative_growth_df(_df): | |
# Sort by date to ensure correct cumulative sum | |
_df = _df.sort_values(by="date") | |
# Pivot the dataframe to get the totalsize | |
pivot_df = _df.pivot_table( | |
index="date", columns="type", values="totalsize", aggfunc="sum" | |
).fillna(0) | |
# Calculate cumulative sum | |
cumulative_df = pivot_df.cumsum() | |
return cumulative_df | |
def compare_last_10_months(_cumulative_df, _cumulative_df_compressed): | |
last_10_months = _cumulative_df.tail(10).copy() | |
last_10_months["total"] = last_10_months.sum(axis=1) | |
last_10_months["total_change"] = last_10_months["total"].diff() | |
last_10_months["compressed_change"] = ( | |
_cumulative_df_compressed.tail(10).sum(axis=1).diff() | |
) | |
last_10_months["savings"] = ( | |
last_10_months["total_change"] - last_10_months["compressed_change"] | |
) | |
last_10_months = format_dataframe_size_column( | |
last_10_months, ["total_change", "compressed_change", "savings"] | |
) | |
last_10_months["date"] = _cumulative_df.tail(10).index | |
# drop the dataset, model, and space | |
last_10_months = last_10_months.drop(columns=["model", "space", "dataset"]) | |
# pretiffy the date column to not have 00:00:00 | |
last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m") | |
# drop the first row | |
last_10_months = last_10_months.drop(last_10_months.index[0]) | |
# order the columns date, total, total_change | |
last_10_months = last_10_months[ | |
["date", "total_change", "compressed_change", "savings"] | |
] | |
# rename the columns | |
last_10_months = last_10_months.rename( | |
columns={ | |
"date": "Date", | |
"total_change": "Month-to-Month Growth (PBs)", | |
"compressed_change": "Growth with File-Level Deduplication (PBs)", | |
"savings": "Dedupe Savings (PBs)", | |
} | |
) | |
return last_10_months | |
def tabular_analysis(repo_sizes, cumulative_df, cumulative_df_compressed): | |
# create a new column in the repository sizes dataframe for "compressed size" and set it to empty atif rist | |
repo_sizes["Compressed Size (PBs)"] = "" | |
repo_sizes["Dedupe Savings (PBs)"] = "" | |
for column in cumulative_df.columns: | |
cum_repo_size = cumulative_df[column].iloc[-1] | |
comp_repo_size = cumulative_df_compressed[column].iloc[-1] | |
repo_size_diff = cum_repo_size - comp_repo_size | |
repo_sizes.loc[ | |
repo_sizes["Repository Type"] == column.capitalize(), | |
"Compressed Size (PBs)", | |
] = comp_repo_size | |
repo_sizes.loc[ | |
repo_sizes["Repository Type"] == column.capitalize(), "Dedupe Savings (PBs)" | |
] = repo_size_diff | |
# add a row that sums the total size and compressed size | |
repo_sizes.loc["Total"] = repo_sizes.sum() | |
repo_sizes.loc["Total", "Repository Type"] = "Total" | |
return repo_sizes | |
def cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed): | |
""" | |
Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis. | |
Args: | |
df (DataFrame): The input dataframe containing the data. | |
df_compressed (DataFrame): The input dataframe containing the compressed data. | |
Returns: | |
tuple: A tuple containing two elements: | |
- fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time. | |
- last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes. | |
Raises: | |
None | |
""" | |
# Create a Plotly figure | |
fig = go.Figure() | |
# Define a color map for each type | |
color_map = { | |
"model": px.colors.qualitative.Alphabet[3], | |
"space": px.colors.qualitative.Alphabet[2], | |
"dataset": px.colors.qualitative.Alphabet[9], | |
} | |
# Add a scatter trace for each type | |
for column in cumulative_df.columns: | |
fig.add_trace( | |
go.Scatter( | |
x=cumulative_df.index, | |
y=cumulative_df[column] / 1e15, # Convert to petabytes | |
mode="lines", | |
name=column.capitalize(), | |
line=dict(color=color_map.get(column, "black")), # Use color map | |
) | |
) | |
# Add a scatter trace for each type | |
for column in cumulative_df_compressed.columns: | |
fig.add_trace( | |
go.Scatter( | |
x=cumulative_df_compressed.index, | |
y=cumulative_df_compressed[column] / 1e15, # Convert to petabytes | |
mode="lines", | |
name=column.capitalize() + " (File-Level Deduplication)", | |
line=dict(color=color_map.get(column, "black"), dash="dash"), | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title="Cumulative Growth of Models, Spaces, and Datasets Over Time<br><sup>Dotted lines represent growth with file-level deduplication</sup>", | |
xaxis_title="Date", | |
yaxis_title="Cumulative Size (PBs)", | |
legend_title="Type", | |
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places | |
) | |
return fig | |
def plot_total_sum(by_type_arr): | |
# Sort the array by size in decreasing order | |
by_type_arr = sorted(by_type_arr, key=lambda x: x[1]) | |
# Create a Plotly figure | |
fig = go.Figure() | |
# Add a bar trace for each type | |
for type, size in by_type_arr: | |
fig.add_trace( | |
go.Bar( | |
x=[type], | |
y=[size / 1e15], # Convert to petabytes | |
name=type.capitalize(), | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title="Top 20 File Extensions by Total Size (in PBs)", | |
xaxis_title="File Extension", | |
yaxis_title="Total Size (PBs)", | |
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places | |
colorway=px.colors.qualitative.Alphabet, # Use Plotly color palette | |
) | |
return fig | |
def filter_by_extension_month(_df, _extension): | |
""" | |
Filters the given DataFrame (_df) by the specified extension and creates a line plot using Plotly. | |
Parameters: | |
_df (DataFrame): The input DataFrame containing the data. | |
extension (str): The extension to filter the DataFrame by. If None, no filtering is applied. | |
Returns: | |
fig (Figure): The Plotly figure object representing the line plot. | |
""" | |
# Filter the DataFrame by the specified extension or extensions | |
if _extension is None: | |
pass | |
elif len(_extension) == 0: | |
pass | |
else: | |
_df = _df[_df["extension"].isin(_extension)].copy() | |
# Convert year and month into a datetime column and sort by date | |
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1)) | |
_df = _df.sort_values(by="date") | |
# Pivot the DataFrame to get the total size for each extension and make this plotable as a time series | |
pivot_df = _df.pivot_table( | |
index="date", columns="extension", values="total_size" | |
).fillna(0) | |
# Plot!! | |
fig = go.Figure() | |
for i, column in enumerate(pivot_df.columns): | |
if column != "": | |
fig.add_trace( | |
go.Scatter( | |
x=pivot_df.index, | |
y=pivot_df[column] / 1e12, # Convert to TBs | |
mode="lines", | |
name=column, | |
line=dict(color=px.colors.qualitative.Alphabet[i]), | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title="Monthly Additions of LFS Files by Extension (in TBs)", | |
xaxis_title="Date", | |
yaxis_title="Size (TBs)", | |
legend_title="Type", | |
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places | |
) | |
return fig | |
def area_plot_by_extension_month(_df): | |
_df["total_size"] = _df["total_size"] / 1e15 | |
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1)) | |
# make a plotly area chart with data and extension | |
fig = px.area(_df, x="date", y="total_size", color="extension") | |
# Update layout | |
fig.update_layout( | |
title="File Extension Monthly Additions (in PBs) Over Time", | |
xaxis_title="Date", | |
yaxis_title="Size (PBs)", | |
legend_title="Type", | |
# format y-axis to be PBs (currently bytes) with two decimal places | |
yaxis=dict(tickformat=".2f"), | |
) | |
return fig | |
## Utility functions | |
def div_px(height): | |
""" | |
Returns a string representing a div element with the specified height in pixels. | |
""" | |
return f"<div style='height: {height}px;'></div>" | |
def format_dataframe_size_column(_df, column_names): | |
""" | |
Format the size to petabytes and return the formatted size. | |
""" | |
for column_name in column_names: | |
_df[column_name] = _df[column_name] / 1e15 | |
_df[column_name] = _df[column_name].map("{:.2f}".format) | |
return _df | |
def month_year_to_date(_df): | |
""" | |
Converts the 'year' and 'month' columns in the given DataFrame to a single 'date' column. | |
""" | |
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1)) | |
return _df | |
# Create a gradio blocks interface and launch a demo | |
with gr.Blocks() as demo: | |
df, file_df, by_repo_type, by_extension, by_extension_month = process_dataset() | |
# Convert year and month into a datetime column | |
df = month_year_to_date(df) | |
df_compressed = month_year_to_date(file_df) | |
# Calculate the cumulative growth of models, spaces, and datasets over time | |
cumulative_df = cumulative_growth_df(df) | |
cumulative_df_compressed = cumulative_growth_df(df_compressed) | |
last_10_months = compare_last_10_months(cumulative_df, cumulative_df_compressed) | |
by_repo_type = tabular_analysis( | |
by_repo_type, cumulative_df, cumulative_df_compressed | |
) | |
# get the figure for the cumulative growth plot and the last 10 months dataframe | |
fig = cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed) | |
# Add top level heading and introduction text | |
gr.Markdown("# Git LFS Usage Across the Hub") | |
gr.Markdown( | |
"The Hugging Face Hub has just crossed 1,000,000 models - but where is all that data stored? Most of it is stored in Git LFS. This analysis dives into the LFS storage on the Hub, breaking down the data by repository type, file extension, and growth over time. The data is based on a snapshot of the Hub's LFS storage, starting in March 2022 and ending September 20th, 2024 (meaning the data is incomplete for September 2024). Right now, this is a one-time analysis, but as we do our work we hope to revisit and update the underlying data to provide more insights." | |
) | |
gr.Markdown( | |
"Now, you might ask yourself, 'Why are you doing this?' Well, the [Xet Team](https://huggingface.co/xet-team) is a [new addition to Hugging Face](https://huggingface.co/blog/xethub-joins-hf), bringing a new way to store massive datasets and models to enable ML teams to operate like software teams: Quickly and without friction. Because this story all starts with storage, that's where we've begun with our own deep dives into what the Hub holds. As part of this, we've included a look at what happens with just one simple deduplication strategy - deduplicating at the file level. Read on to see more!" | |
) | |
gr.HTML(div_px(25)) | |
# Cumulative growth analysis | |
gr.Markdown("## Repository Growth") | |
gr.Markdown( | |
"The plot below shows the growth of Git LFS storage on the Hub over the past two years. The solid lines represent the cumulative growth of models, spaces, and datasets, while the dashed lines represent the growth with file-level deduplication." | |
) | |
gr.Plot(fig) | |
gr.HTML(div_px(5)) | |
# @TODO Talk to Allison about variant="panel" | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown( | |
"In this table, we can see what the final picture looks like as of September 20th, 2024, along with the potential file-level deduplication savings." | |
) | |
gr.Markdown( | |
"To put this in context, the last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31). The Spaces repositories alone outpaces that! Meanwhile, between Datasets and Model repos, the Hub stores **64 Common Crawls** 🤯. Current estimates put file deduplication savings at approximately 3.24 PBs (7.2 Common Crawls)!" | |
) | |
with gr.Column(scale=3): | |
# Convert the total size to petabytes and format to two decimal places | |
by_repo_type = format_dataframe_size_column( | |
by_repo_type, | |
["Total Size (PBs)", "Compressed Size (PBs)", "Dedupe Savings (PBs)"], | |
) | |
gr.Dataframe(by_repo_type) | |
gr.HTML(div_px(5)) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown( | |
"The month-to-month growth of models, spaces, can be seen in the adjacent table. In 2024, the Hub has averaged nearly **2.3 PBs uploaded to LFS per month!** By the same token, the monthly file deduplication savings are nearly 225TBs. " | |
) | |
gr.Markdown( | |
"Borrowing from the Common Crawl analogy, that's about *5 crawls* uploaded every month, with an _easy savings of half a crawl every month_ by deduplicating at the file-level!" | |
) | |
with gr.Column(scale=3): | |
gr.Dataframe(last_10_months) | |
gr.HTML(div_px(25)) | |
# File Extension analysis | |
gr.Markdown("## File Extensions on the Hub") | |
gr.Markdown( | |
"Breaking this down by file extension, some interesting trends emerge. The following sections filter the analysis to the top 20 file extensions stored (in bytes) using LFS (which accounts for 82% of storage consumption)." | |
) | |
gr.Markdown( | |
"As is evident in the chart below, [Safetensors](https://huggingface.co/docs/safetensors/en/index) is quickly becoming the defacto standard on the Hub for storing tensor files, accounting for over 7PBs (25%) of LFS storage. If you want to know why you'd want to check out YAF (yet another format), this explanation from the [Safetensors docs](https://github.com/huggingface/safetensors?tab=readme-ov-file#yet-another-format-) is a good place to start. Speaking of YAF, [GGUF (GPT-Generated Unified Format)](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) is also on the rise, accounting for 3.2 PBs (11%) of LFS storage. GGUF, like Safetensors, is a format for storing tensor files, with a different set of optimizations. The Hub has a few [built-in tools](https://huggingface.co/docs/hub/en/gguf) for working with GGUF." | |
) | |
# Get the top 10 file extnesions by size | |
by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22) | |
# make a bar chart of the by_extension_size dataframe | |
gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values)) | |
# drop the unnamed: 0 column | |
by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"]) | |
# average size | |
by_extension_size["Average File Size (MBs)"] = ( | |
by_extension_size["size"].astype(float) / by_extension_size["count"] | |
) | |
by_extension_size["Average File Size (MBs)"] = ( | |
by_extension_size["Average File Size (MBs)"] / 1e6 | |
) | |
by_extension_size["Average File Size (MBs)"] = by_extension_size[ | |
"Average File Size (MBs)" | |
].map("{:.2f}".format) | |
# format the size column | |
by_extension_size = format_dataframe_size_column(by_extension_size, ["size"]) | |
# Rename the other columns | |
by_extension_size = by_extension_size.rename( | |
columns={ | |
"extension": "File Extension", | |
"count": "Number of Files", | |
"size": "Total Size (PBs)", | |
} | |
) | |
gr.HTML(div_px(5)) | |
gr.Markdown( | |
"Below, we have a more detailed tabular view of the same top 20 file extensions by total size, number of files, and average file size." | |
) | |
gr.Dataframe(by_extension_size) | |
gr.HTML(div_px(5)) | |
gr.Markdown("### File Extension Monthly Additions (in PBs)") | |
gr.Markdown( | |
"What if we want to see trends over time? The following area chart shows the number of bytes added to LFS storage each month, faceted by the most popular file extensions." | |
) | |
gr.Plot(area_plot_by_extension_month(by_extension_month)) | |
gr.HTML(div_px(5)) | |
gr.Markdown( | |
"To dig a little deeper, the following dropdown allows you to filter the area chart by file extension. Because we're dealing with individual file extensions, the data is presented in terabytes (TBs)." | |
) | |
# build a dropdown using the unique values in the extension column | |
extension = gr.Dropdown( | |
choices=by_extension["extension"].unique().tolist(), | |
multiselect=True, | |
label="File Extension", | |
) | |
_by_extension_month = gr.State(by_extension_month) | |
gr.Plot(filter_by_extension_month, inputs=[_by_extension_month, extension]) | |
# launch the dang thing | |
demo.launch() | |