Number inference steps
#45
by
Fabrice-TIERCELIN
- opened
app.py
CHANGED
@@ -43,7 +43,8 @@ def animate(
|
|
43 |
version: str = "auto",
|
44 |
width: int = 1024,
|
45 |
height: int = 576,
|
46 |
-
motion_control: bool = False
|
|
|
47 |
):
|
48 |
start = time.time()
|
49 |
|
@@ -56,7 +57,7 @@ def animate(
|
|
56 |
image_data = image_data.convert("RGB")
|
57 |
|
58 |
if motion_control:
|
59 |
-
image_data = [image_data] *
|
60 |
|
61 |
if randomize_seed:
|
62 |
seed = random.randint(0, max_64_bit_int)
|
@@ -76,7 +77,8 @@ def animate(
|
|
76 |
decoding_t,
|
77 |
version,
|
78 |
width,
|
79 |
-
height
|
|
|
80 |
)
|
81 |
|
82 |
os.makedirs(output_folder, exist_ok=True)
|
@@ -133,16 +135,17 @@ def animate_on_gpu(
|
|
133 |
decoding_t: int = 3,
|
134 |
version: str = "svdxt",
|
135 |
width: int = 1024,
|
136 |
-
height: int = 576
|
|
|
137 |
):
|
138 |
generator = torch.manual_seed(seed)
|
139 |
|
140 |
if version == "dragnuwa":
|
141 |
-
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
|
142 |
elif version == "svdxt":
|
143 |
-
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
|
144 |
else:
|
145 |
-
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
|
146 |
|
147 |
|
148 |
def resize_image(image, output_size=(1024, 576)):
|
@@ -193,7 +196,8 @@ def reset():
|
|
193 |
"auto",
|
194 |
1024,
|
195 |
576,
|
196 |
-
False
|
|
|
197 |
]
|
198 |
|
199 |
with gr.Blocks() as demo:
|
@@ -215,12 +219,13 @@ with gr.Blocks() as demo:
|
|
215 |
with gr.Accordion("Advanced options", open=False):
|
216 |
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
|
217 |
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
|
218 |
-
motion_control = gr.Checkbox(label="Motion control (
|
219 |
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
|
220 |
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
|
221 |
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
|
222 |
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
223 |
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
|
|
|
224 |
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
|
225 |
version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA (unstable)", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True)
|
226 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
@@ -249,7 +254,8 @@ with gr.Blocks() as demo:
|
|
249 |
version,
|
250 |
width,
|
251 |
height,
|
252 |
-
motion_control
|
|
|
253 |
], outputs=[
|
254 |
video_output,
|
255 |
gif_output,
|
@@ -273,16 +279,17 @@ with gr.Blocks() as demo:
|
|
273 |
version,
|
274 |
width,
|
275 |
height,
|
276 |
-
motion_control
|
|
|
277 |
], queue = False, show_progress = False)
|
278 |
|
279 |
gr.Examples(
|
280 |
examples=[
|
281 |
-
["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False],
|
282 |
-
["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False],
|
283 |
-
["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False]
|
284 |
],
|
285 |
-
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control],
|
286 |
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
|
287 |
fn=animate,
|
288 |
run_on_click=True,
|
|
|
43 |
version: str = "auto",
|
44 |
width: int = 1024,
|
45 |
height: int = 576,
|
46 |
+
motion_control: bool = False,
|
47 |
+
num_inference_steps: int = 25
|
48 |
):
|
49 |
start = time.time()
|
50 |
|
|
|
57 |
image_data = image_data.convert("RGB")
|
58 |
|
59 |
if motion_control:
|
60 |
+
image_data = [image_data] * 2
|
61 |
|
62 |
if randomize_seed:
|
63 |
seed = random.randint(0, max_64_bit_int)
|
|
|
77 |
decoding_t,
|
78 |
version,
|
79 |
width,
|
80 |
+
height,
|
81 |
+
num_inference_steps
|
82 |
)
|
83 |
|
84 |
os.makedirs(output_folder, exist_ok=True)
|
|
|
135 |
decoding_t: int = 3,
|
136 |
version: str = "svdxt",
|
137 |
width: int = 1024,
|
138 |
+
height: int = 576,
|
139 |
+
num_inference_steps: int = 25
|
140 |
):
|
141 |
generator = torch.manual_seed(seed)
|
142 |
|
143 |
if version == "dragnuwa":
|
144 |
+
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
145 |
elif version == "svdxt":
|
146 |
+
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
147 |
else:
|
148 |
+
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
149 |
|
150 |
|
151 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
196 |
"auto",
|
197 |
1024,
|
198 |
576,
|
199 |
+
False,
|
200 |
+
25
|
201 |
]
|
202 |
|
203 |
with gr.Blocks() as demo:
|
|
|
219 |
with gr.Accordion("Advanced options", open=False):
|
220 |
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
|
221 |
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
|
222 |
+
motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False)
|
223 |
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
|
224 |
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
|
225 |
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
|
226 |
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
227 |
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
|
228 |
+
num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1)
|
229 |
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
|
230 |
version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA (unstable)", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True)
|
231 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
|
|
254 |
version,
|
255 |
width,
|
256 |
height,
|
257 |
+
motion_control,
|
258 |
+
num_inference_steps
|
259 |
], outputs=[
|
260 |
video_output,
|
261 |
gif_output,
|
|
|
279 |
version,
|
280 |
width,
|
281 |
height,
|
282 |
+
motion_control,
|
283 |
+
num_inference_steps
|
284 |
], queue = False, show_progress = False)
|
285 |
|
286 |
gr.Examples(
|
287 |
examples=[
|
288 |
+
["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
289 |
+
["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
290 |
+
["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25]
|
291 |
],
|
292 |
+
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps],
|
293 |
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
|
294 |
fn=animate,
|
295 |
run_on_click=True,
|