|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import time |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import paddle |
|
|
|
from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTokenizer |
|
|
|
from ...fastdeploy_utils import FastDeployRuntimeModel |
|
from ...pipeline_utils import DiffusionPipeline |
|
from ...schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from ...schedulers.preconfig import ( |
|
PreconfigEulerAncestralDiscreteScheduler, |
|
PreconfigLMSDiscreteScheduler, |
|
) |
|
from ...utils import logging |
|
from . import StableDiffusionPipelineOutput |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class FastDeployStableDiffusionPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving etc.) |
|
|
|
Args: |
|
vae_encoder ([`FastDeployRuntimeModel`]): |
|
Variational Auto-Encoder (VAE) Model to encode images to latent representations. |
|
vae_decoder ([`FastDeployRuntimeModel`]): |
|
Variational Auto-Encoder (VAE) Model to decode images from latent representations. |
|
text_encoder ([`FastDeployRuntimeModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] |
|
or [`DPMSolverMultistepScheduler`]. |
|
safety_checker ([`FastDeployRuntimeModel`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["vae_encoder", "safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae_encoder: FastDeployRuntimeModel, |
|
vae_decoder: FastDeployRuntimeModel, |
|
text_encoder: FastDeployRuntimeModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: FastDeployRuntimeModel, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
PreconfigLMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
PreconfigEulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
safety_checker: FastDeployRuntimeModel, |
|
feature_extractor: CLIPFeatureExtractor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.register_modules( |
|
vae_encoder=vae_encoder, |
|
vae_decoder=vae_decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids |
|
|
|
if not np.array_equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int64))[0] |
|
text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] * batch_size |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int64))[0] |
|
uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0) |
|
|
|
|
|
|
|
|
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) |
|
|
|
return text_embeddings |
|
|
|
def run_safety_checker(self, image, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor( |
|
self.numpy_to_pil(image), return_tensors="np" |
|
).pixel_values.astype(dtype) |
|
|
|
images, has_nsfw_concept = [], [] |
|
for i in range(image.shape[0]): |
|
image_i, has_nsfw_concept_i = self.safety_checker( |
|
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] |
|
) |
|
images.append(image_i) |
|
has_nsfw_concept.append(has_nsfw_concept_i[0]) |
|
image = np.concatenate(images) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / 0.18215 * latents |
|
latents_shape = latents.shape |
|
vae_output_shape = [latents_shape[0], 3, latents_shape[2] * 8, latents_shape[3] * 8] |
|
images_vae = paddle.zeros(vae_output_shape, dtype="float32") |
|
|
|
vae_input_name = self.vae_decoder.model.get_input_info(0).name |
|
vae_output_name = self.vae_decoder.model.get_output_info(0).name |
|
|
|
self.vae_decoder.zero_copy_infer( |
|
prebinded_inputs={vae_input_name: latents}, |
|
prebinded_outputs={vae_output_name: images_vae}, |
|
share_with_raw_ptr=True, |
|
) |
|
|
|
images_vae = paddle.clip(images_vae / 2 + 0.5, 0, 1) |
|
images = images_vae.transpose([0, 2, 3, 1]) |
|
return images.numpy() |
|
|
|
def prepare_extra_step_kwargs(self, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
return extra_step_kwargs |
|
|
|
def check_var_kwargs_of_scheduler_func(self, scheduler_func): |
|
sig = inspect.signature(scheduler_func) |
|
params = sig.parameters.values() |
|
has_kwargs = any([True for p in params if p.kind == p.VAR_KEYWORD]) |
|
return has_kwargs |
|
|
|
def check_inputs(self, prompt, height, width, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): |
|
if generator is None: |
|
generator = np.random |
|
|
|
latents_shape = (batch_size, num_channels_latents, height // 8, width // 8) |
|
if latents is None: |
|
latents = generator.randn(*latents_shape).astype(dtype) |
|
elif latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
|
|
|
|
latents = latents * float(self.scheduler.init_noise_sigma) |
|
return latents |
|
|
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[np.random.RandomState] = None, |
|
latents: Optional[np.ndarray] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`np.random.RandomState`, *optional*): |
|
A np.random.RandomState to make generation deterministic. |
|
latents (`np.ndarray`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
start_time_encode_prompt = time.perf_counter() |
|
text_embeddings = self._encode_prompt( |
|
prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
print("_encode_prompt latency:", time.perf_counter() - start_time_encode_prompt) |
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = 4 |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
text_embeddings.dtype, |
|
generator, |
|
latents, |
|
) |
|
if isinstance(latents, np.ndarray): |
|
latents = paddle.to_tensor(latents) |
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(eta) |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
scheduler_support_kwagrs_scale_input = self.check_var_kwargs_of_scheduler_func( |
|
self.scheduler.scale_model_input |
|
) |
|
scheduler_support_kwagrs_step = self.check_var_kwargs_of_scheduler_func(self.scheduler.step) |
|
|
|
unet_output_name = self.unet.model.get_output_info(0).name |
|
unet_input_names = [self.unet.model.get_input_info(i).name for i in range(self.unet.model.num_inputs())] |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
text_embeddings = paddle.to_tensor(text_embeddings, dtype="float32") |
|
for i, t in enumerate(timesteps): |
|
noise_pred_unet = paddle.zeros( |
|
[2 * batch_size * num_images_per_prompt, 4, height // 8, width // 8], dtype="float32" |
|
) |
|
|
|
latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents |
|
if scheduler_support_kwagrs_scale_input: |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t, step_index=i) |
|
else: |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
self.unet.zero_copy_infer( |
|
prebinded_inputs={ |
|
unet_input_names[0]: latent_model_input, |
|
unet_input_names[1]: t, |
|
unet_input_names[2]: text_embeddings, |
|
}, |
|
prebinded_outputs={unet_output_name: noise_pred_unet}, |
|
share_with_raw_ptr=True, |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred_unet.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if scheduler_support_kwagrs_step: |
|
scheduler_output = self.scheduler.step( |
|
noise_pred, t, latents, step_index=i, return_pred_original_sample=False, **extra_step_kwargs |
|
) |
|
else: |
|
scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs) |
|
latents = scheduler_output.prev_sample |
|
if i == num_inference_steps - 1: |
|
|
|
paddle.device.cuda.synchronize() |
|
|
|
if i == num_inference_steps - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
time_start_decoder = time.perf_counter() |
|
image = self.decode_latents(latents) |
|
print("decoder latency:", time.perf_counter() - time_start_decoder) |
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|