File size: 2,435 Bytes
24bea5e 632559b 24bea5e d4ea61e 2430578 d4ea61e 8bf3cff 2e8e027 614ef11 2e8e027 c4862fc 720afe6 6e86af3 2430578 d4ea61e 6adc53b d7d2b10 2077d78 1e84a23 2da6866 1e84a23 c64fe21 c94736a 1e84a23 07166ba 1e84a23 b804b36 1e84a23 68211f7 1e84a23 07166ba 1e84a23 bb8872e 1e84a23 08d3119 1e84a23 893a905 8dc68fc 1e84a23 893a905 08d3119 2dd43bc 1e84a23 2dd43bc 40d1c80 2809616 94d8fec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# YOLOv5 π by Ultralytics, GPL-3.0 license
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:22.06-py3
RUN rm -rf /opt/pytorch # remove 1.2GB dir
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx
# Install pip packages
COPY requirements.txt .
RUN python -m pip install --upgrade pip wheel
RUN pip uninstall -y Pillow torchtext # torch torchvision
RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
'opencv-python<4.6.0.66' \
--extra-index-url https://download.pytorch.org/whl/cu113
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/yolov5
# Set environment variables
ENV OMP_NUM_THREADS=8
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash
# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
# Clean up
# docker system prune -a --volumes
# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
# GCP VM from Image
# docker.io/ultralytics/yolov5:latest
|