video-seal / gradio_app.py
xiaoyao9184's picture
Synced repo using 'sync_with_huggingface' Github Action
216efed verified
raw
history blame
16.1 kB
import os
import sys
if "APP_PATH" in os.environ:
app_path = os.path.abspath(os.environ["APP_PATH"])
if os.getcwd() != app_path:
# fix sys.path for import
os.chdir(app_path)
if app_path not in sys.path:
sys.path.append(app_path)
import gradio as gr
import torch
import torchaudio
import torchvision
import matplotlib.pyplot as plt
import re
import random
import string
from audioseal import AudioSeal
import videoseal
from videoseal.utils.display import save_video_audio_to_mp4
# Load video_model if not already loaded in reload mode
if 'video_model' not in globals():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the VideoSeal model
video_model = videoseal.load("videoseal")
video_model.eval()
video_model.to(device)
video_model_nbytes = int(video_model.embedder.msg_processor.nbits / 8)
# Load the AudioSeal model
# Load audio_generator if not already loaded in reload mode
if 'audio_generator' not in globals():
audio_generator = AudioSeal.load_generator("audioseal_wm_16bits")
audio_generator = audio_generator.to(device)
audio_generator_nbytes = int(audio_generator.msg_processor.nbits / 8)
# Load audio_detector if not already loaded in reload mode
if 'audio_detector' not in globals():
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
audio_detector = audio_detector.to(device)
def load_video(file):
# Read the video and convert to tensor format
video, audio, info = torchvision.io.read_video(file, output_format="TCHW", pts_unit="sec")
assert "audio_fps" in info, "The input video must contain an audio track. Simply refer to the main videoseal inference code if not."
# Normalize the video frames to the range [0, 1]
# audio = audio.float()
# video = video.float() / 255.0
# Normalize the video frames to the range [0, 1] and trim to 3 second
fps = 24
video = video[:fps * 3].float() / 255.0
sample_rate = info["audio_fps"]
audio = audio[:, :int(sample_rate * 3)].float()
return video, info["video_fps"], audio, info["audio_fps"]
def generate_msg_pt_by_format_string(format_string, bytes_count):
msg_hex = format_string.replace("-", "")
hex_length = bytes_count * 2
binary_list = []
for i in range(0, len(msg_hex), hex_length):
chunk = msg_hex[i:i+hex_length]
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
binary_list.append([int(b) for b in binary])
# torch.randint(0, 2, (1, 16), dtype=torch.int32)
msg_pt = torch.tensor(binary_list, dtype=torch.int32)
return msg_pt.to(device)
def embed_watermark(output_file, msg_v, msg_a, video_only, video, fps, audio, sample_rate):
# Perform watermark embedding on video
with torch.no_grad():
outputs = video_model.embed(video, is_video=True, msgs=msg_v)
# Extract the results
video_w = outputs["imgs_w"] # Watermarked video frames
video_msgs = outputs["msgs"] # Watermark messages
if not video_only:
# Resample the audio to 16kHz for watermarking
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000)(audio)
# If the audio has more than one channel, average all channels to 1 channel
if audio_16k.shape[0] > 1:
audio_16k_mono = torch.mean(audio_16k, dim=0, keepdim=True)
else:
audio_16k_mono = audio_16k
# Add batch dimension to the audio tensor
audio_16k_mono_batched = audio_16k_mono.unsqueeze(0).to(device)
# Get the watermark for the audio
with torch.no_grad():
watermark = audio_generator.get_watermark(
audio_16k_mono_batched, 16000, message=msg_a
)
# Embed the watermark in the audio
audio_16k_w = audio_16k_mono_batched + watermark
# Remove batch dimension from the watermarked audio tensor
audio_16k_w = audio_16k_w.squeeze(0)
# If the original audio had more than one channel, duplicate the watermarked audio to all channels
if audio_16k.shape[0] > 1:
audio_16k_w = audio_16k_w.repeat(audio_16k.shape[0], 1)
# Resample the watermarked audio back to the original sample rate
audio_w = torchaudio.transforms.Resample(16000, sample_rate).to(device)(audio_16k_w)
else:
audio_w = audio
# for Incompatible pixel format 'rgb24' for codec 'libx264', auto-selecting format 'yuv444p'
video_w = video_w.flip(1)
# Save the watermarked video and audio
save_video_audio_to_mp4(
video_tensor=video_w,
audio_tensor=audio_w,
fps=int(fps),
audio_sample_rate=int(sample_rate),
output_filename=output_file,
)
print(f"encoded message: \n Audio: {msg_a} \n Video {video_msgs[0]}")
return video_w, audio_w
def generate_format_string_by_msg_pt(msg_pt, bytes_count):
hex_length = bytes_count * 2
binary_int = 0
for bit in msg_pt:
binary_int = (binary_int << 1) | int(bit.item())
hex_string = format(binary_int, f'0{hex_length}x')
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_hex = "-".join(split_hex)
return hex_string, format_hex
def detect_watermark(video_only, video, audio, sample_rate):
# Detect watermarks in the video
with torch.no_grad():
msg_extracted = video_model.extract_message(video)
print(f"Extracted message from video: {msg_extracted}")
if not video_only:
if len(audio.shape) == 2:
audio = audio.unsqueeze(0).to(device) # batchify
# if stereo convert to mono
if audio.shape[1] > 1:
audio = torch.mean(audio, dim=1, keepdim=True)
# Resample the audio to 16kHz for detectting
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000).to(device)(audio)
# Detect watermarks in the audio
with torch.no_grad():
result, message = audio_detector.detect_watermark(audio_16k, 16000)
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
# A watermarked audio should have pred_prob[:, 1, :] > 0.5
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
# message will be a random tensor if the detector detects no watermarking from the audio
pred_prob, message_prob = audio_detector(audio_16k, sample_rate)
print(f"Detection result for audio: {result}")
print(f"Extracted message from audio: {message}")
return msg_extracted, (result, message, pred_prob, message_prob)
else:
return msg_extracted, None
def get_waveform_and_specgram(waveform, sample_rate):
# If the audio has more than one channel, average all channels to 1 channel
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
waveform = waveform.squeeze().detach().cpu().numpy()
num_frames = waveform.shape[-1]
time_axis = torch.arange(0, num_frames) / sample_rate
figure, (ax1, ax2) = plt.subplots(2, 1)
ax1.plot(time_axis, waveform, linewidth=1)
ax1.grid(True)
ax2.specgram(waveform, Fs=sample_rate)
figure.suptitle(f"Waveform and specgram")
return figure
def generate_hex_format_regex(bytes_count):
hex_length = bytes_count * 2
hex_string = 'F' * hex_length
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_like = "-".join(split_hex)
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
return format_like, regex_pattern
def generate_hex_random_message(bytes_count):
hex_length = bytes_count * 2
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
random_str = "-".join(split_hex)
return random_str, "".join(split_hex)
with gr.Blocks(title="VideoSeal") as demo:
gr.Markdown("""
# VideoSeal Demo
The current video will be YUV444P encoded, truncated to 3 seconds for use, and multi-channel audio will be merged into a single channel for processing.
Find the project [here](https://github.com/facebookresearch/videoseal.git).
""")
with gr.Tabs():
with gr.TabItem("Embed Watermark"):
with gr.Row():
with gr.Column():
embedding_vid = gr.Video(label="Input Video")
with gr.Row():
with gr.Column():
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
format_like, regex_pattern = generate_hex_format_regex(video_model_nbytes)
msg, _ = generate_hex_random_message(video_model_nbytes)
embedding_msg = gr.Textbox(
label=f"Message ({video_model_nbytes} bytes hex string)",
info=f"format like {format_like}",
value=msg,
interactive=False, show_copy_button=True)
with gr.Column():
embedding_only_vid = gr.Checkbox(label="Only Video", value=False)
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information")
format_like_a, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
embedding_msg_a = gr.Textbox(
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)",
info=f"format like {format_like_a}",
value=msg_a,
interactive=False, show_copy_button=True)
embedding_btn = gr.Button("Embed Watermark")
with gr.Column():
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False)
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False)
def change_embedding_type(video_only):
return [gr.update(visible=not video_only, value=False),gr.update(visible=not video_only)]
embedding_only_vid.change(
fn=change_embedding_type,
inputs=[embedding_only_vid],
outputs=[embedding_specgram, embedding_msg_a]
)
def change_embedding_type(type):
if type == "random":
msg, _ = generate_hex_random_message(video_model_nbytes)
msg_a,_ = generate_hex_random_message(audio_generator_nbytes)
return [gr.update(interactive=False, value=msg),gr.update(interactive=False, value=msg_a)]
else:
return [gr.update(interactive=True),gr.update(interactive=True)]
embedding_type.change(
fn=change_embedding_type,
inputs=[embedding_type],
outputs=[embedding_msg, embedding_msg_a]
)
def check_embedding_msg(msg, msg_a):
if not re.match(regex_pattern, msg):
gr.Warning(
f"Invalid format. Please use like '{format_like}'",
duration=0)
if not re.match(regex_pattern_a, msg_a):
gr.Warning(
f"Invalid format. Please use like '{format_like_a}'",
duration=0)
embedding_msg.change(
fn=check_embedding_msg,
inputs=[embedding_msg, embedding_msg_a],
outputs=[]
)
def run_embed_watermark(file, video_only, show_specgram, msg, msg_a):
if file is None:
raise gr.Error("No file uploaded", duration=5)
if not re.match(regex_pattern, msg):
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5)
if not re.match(regex_pattern_a, msg_a):
raise gr.Error(f"Invalid format. Please use like '{format_like_a}'", duration=5)
msg_pt = generate_msg_pt_by_format_string(msg, video_model_nbytes)
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
video, fps, audio, rate = load_video(file)
output_path = file + '.marked.mp4'
_, audio_w = embed_watermark(output_path, msg_pt, msg_pt_a, video_only, video, fps, audio, rate)
if show_specgram:
fig_original = get_waveform_and_specgram(audio, rate)
fig_watermarked = get_waveform_and_specgram(audio_w, rate)
return [
output_path,
gr.update(visible=True, value=fig_original),
gr.update(visible=True, value=fig_watermarked)]
else:
return [
output_path,
gr.update(visible=False),
gr.update(visible=False)]
embedding_btn.click(
fn=run_embed_watermark,
inputs=[embedding_vid, embedding_only_vid, embedding_specgram, embedding_msg, embedding_msg_a],
outputs=[marked_vid, specgram_original, specgram_watermarked]
)
with gr.TabItem("Detect Watermark"):
with gr.Row():
with gr.Column():
detecting_vid = gr.Video(label="Input Video")
detecting_only_vid = gr.Checkbox(label="Only Video", value=False)
detecting_btn = gr.Button("Detect Watermark")
with gr.Column():
predicted_messages = gr.JSON(label="Detected Messages")
def run_detect_watermark(file, video_only):
if file is None:
raise gr.Error("No file uploaded", duration=5)
video, _, audio, rate = load_video(file)
if video_only:
msg_extracted, _ = detect_watermark(video_only, video, audio, rate)
audio_json = None
else:
msg_extracted, (result, message, pred_prob, message_prob) = detect_watermark(video_only, video, audio, rate)
_, fromat_msg = generate_format_string_by_msg_pt(message[0], audio_generator_nbytes)
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1)
audio_json = {
"socre": result,
"message": fromat_msg,
"frames_count_all": pred_prob.shape[2],
"frames_count_above_05": sum_above_05[0].item(),
"bits_probability": message_prob[0].tolist(),
"bits_massage": message[0].tolist()
}
_, fromat_msg = generate_format_string_by_msg_pt(msg_extracted[0], video_model_nbytes)
# Create message output as JSON
message_json = {
"video": {
"message": fromat_msg,
},
"audio:": audio_json
}
return message_json
detecting_btn.click(
fn=run_detect_watermark,
inputs=[detecting_vid, detecting_only_vid],
outputs=[predicted_messages]
)
if __name__ == "__main__":
demo.launch()