Spaces:
Runtime error
Runtime error
import os | |
import sys | |
if "APP_PATH" in os.environ: | |
app_path = os.path.abspath(os.environ["APP_PATH"]) | |
if os.getcwd() != app_path: | |
# fix sys.path for import | |
os.chdir(app_path) | |
if app_path not in sys.path: | |
sys.path.append(app_path) | |
import gradio as gr | |
import torch | |
import torchaudio | |
import torchvision | |
import matplotlib.pyplot as plt | |
import re | |
import random | |
import string | |
from audioseal import AudioSeal | |
import videoseal | |
from videoseal.utils.display import save_video_audio_to_mp4 | |
# Load video_model if not already loaded in reload mode | |
if 'video_model' not in globals(): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the VideoSeal model | |
video_model = videoseal.load("videoseal") | |
video_model.eval() | |
video_model.to(device) | |
video_model_nbytes = int(video_model.embedder.msg_processor.nbits / 8) | |
# Load the AudioSeal model | |
# Load audio_generator if not already loaded in reload mode | |
if 'audio_generator' not in globals(): | |
audio_generator = AudioSeal.load_generator("audioseal_wm_16bits") | |
audio_generator = audio_generator.to(device) | |
audio_generator_nbytes = int(audio_generator.msg_processor.nbits / 8) | |
# Load audio_detector if not already loaded in reload mode | |
if 'audio_detector' not in globals(): | |
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits") | |
audio_detector = audio_detector.to(device) | |
def load_video(file): | |
# Read the video and convert to tensor format | |
video, audio, info = torchvision.io.read_video(file, output_format="TCHW", pts_unit="sec") | |
assert "audio_fps" in info, "The input video must contain an audio track. Simply refer to the main videoseal inference code if not." | |
# Normalize the video frames to the range [0, 1] | |
# audio = audio.float() | |
# video = video.float() / 255.0 | |
# Normalize the video frames to the range [0, 1] and trim to 3 second | |
fps = 24 | |
video = video[:fps * 3].float() / 255.0 | |
sample_rate = info["audio_fps"] | |
audio = audio[:, :int(sample_rate * 3)].float() | |
return video, info["video_fps"], audio, info["audio_fps"] | |
def generate_msg_pt_by_format_string(format_string, bytes_count): | |
msg_hex = format_string.replace("-", "") | |
hex_length = bytes_count * 2 | |
binary_list = [] | |
for i in range(0, len(msg_hex), hex_length): | |
chunk = msg_hex[i:i+hex_length] | |
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8) | |
binary_list.append([int(b) for b in binary]) | |
# torch.randint(0, 2, (1, 16), dtype=torch.int32) | |
msg_pt = torch.tensor(binary_list, dtype=torch.int32) | |
return msg_pt.to(device) | |
def embed_watermark(output_file, msg_v, msg_a, video_only, video, fps, audio, sample_rate): | |
# Perform watermark embedding on video | |
with torch.no_grad(): | |
outputs = video_model.embed(video, is_video=True, msgs=msg_v) | |
# Extract the results | |
video_w = outputs["imgs_w"] # Watermarked video frames | |
video_msgs = outputs["msgs"] # Watermark messages | |
if not video_only: | |
# Resample the audio to 16kHz for watermarking | |
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000)(audio) | |
# If the audio has more than one channel, average all channels to 1 channel | |
if audio_16k.shape[0] > 1: | |
audio_16k_mono = torch.mean(audio_16k, dim=0, keepdim=True) | |
else: | |
audio_16k_mono = audio_16k | |
# Add batch dimension to the audio tensor | |
audio_16k_mono_batched = audio_16k_mono.unsqueeze(0).to(device) | |
# Get the watermark for the audio | |
with torch.no_grad(): | |
watermark = audio_generator.get_watermark( | |
audio_16k_mono_batched, 16000, message=msg_a | |
) | |
# Embed the watermark in the audio | |
audio_16k_w = audio_16k_mono_batched + watermark | |
# Remove batch dimension from the watermarked audio tensor | |
audio_16k_w = audio_16k_w.squeeze(0) | |
# If the original audio had more than one channel, duplicate the watermarked audio to all channels | |
if audio_16k.shape[0] > 1: | |
audio_16k_w = audio_16k_w.repeat(audio_16k.shape[0], 1) | |
# Resample the watermarked audio back to the original sample rate | |
audio_w = torchaudio.transforms.Resample(16000, sample_rate).to(device)(audio_16k_w) | |
else: | |
audio_w = audio | |
# for Incompatible pixel format 'rgb24' for codec 'libx264', auto-selecting format 'yuv444p' | |
video_w = video_w.flip(1) | |
# Save the watermarked video and audio | |
save_video_audio_to_mp4( | |
video_tensor=video_w, | |
audio_tensor=audio_w, | |
fps=int(fps), | |
audio_sample_rate=int(sample_rate), | |
output_filename=output_file, | |
) | |
print(f"encoded message: \n Audio: {msg_a} \n Video {video_msgs[0]}") | |
return video_w, audio_w | |
def generate_format_string_by_msg_pt(msg_pt, bytes_count): | |
hex_length = bytes_count * 2 | |
binary_int = 0 | |
for bit in msg_pt: | |
binary_int = (binary_int << 1) | int(bit.item()) | |
hex_string = format(binary_int, f'0{hex_length}x') | |
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
format_hex = "-".join(split_hex) | |
return hex_string, format_hex | |
def detect_watermark(video_only, video, audio, sample_rate): | |
# Detect watermarks in the video | |
with torch.no_grad(): | |
msg_extracted = video_model.extract_message(video) | |
print(f"Extracted message from video: {msg_extracted}") | |
if not video_only: | |
if len(audio.shape) == 2: | |
audio = audio.unsqueeze(0).to(device) # batchify | |
# if stereo convert to mono | |
if audio.shape[1] > 1: | |
audio = torch.mean(audio, dim=1, keepdim=True) | |
# Resample the audio to 16kHz for detectting | |
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000).to(device)(audio) | |
# Detect watermarks in the audio | |
with torch.no_grad(): | |
result, message = audio_detector.detect_watermark(audio_16k, 16000) | |
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame | |
# A watermarked audio should have pred_prob[:, 1, :] > 0.5 | |
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1. | |
# message will be a random tensor if the detector detects no watermarking from the audio | |
pred_prob, message_prob = audio_detector(audio_16k, sample_rate) | |
print(f"Detection result for audio: {result}") | |
print(f"Extracted message from audio: {message}") | |
return msg_extracted, (result, message, pred_prob, message_prob) | |
else: | |
return msg_extracted, None | |
def get_waveform_and_specgram(waveform, sample_rate): | |
# If the audio has more than one channel, average all channels to 1 channel | |
if waveform.shape[0] > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
waveform = waveform.squeeze().detach().cpu().numpy() | |
num_frames = waveform.shape[-1] | |
time_axis = torch.arange(0, num_frames) / sample_rate | |
figure, (ax1, ax2) = plt.subplots(2, 1) | |
ax1.plot(time_axis, waveform, linewidth=1) | |
ax1.grid(True) | |
ax2.specgram(waveform, Fs=sample_rate) | |
figure.suptitle(f"Waveform and specgram") | |
return figure | |
def generate_hex_format_regex(bytes_count): | |
hex_length = bytes_count * 2 | |
hex_string = 'F' * hex_length | |
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
format_like = "-".join(split_hex) | |
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$' | |
return format_like, regex_pattern | |
def generate_hex_random_message(bytes_count): | |
hex_length = bytes_count * 2 | |
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length)) | |
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
random_str = "-".join(split_hex) | |
return random_str, "".join(split_hex) | |
with gr.Blocks(title="VideoSeal") as demo: | |
gr.Markdown(""" | |
# VideoSeal Demo | |
The current video will be YUV444P encoded, truncated to 3 seconds for use, and multi-channel audio will be merged into a single channel for processing. | |
Find the project [here](https://github.com/facebookresearch/videoseal.git). | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Embed Watermark"): | |
with gr.Row(): | |
with gr.Column(): | |
embedding_vid = gr.Video(label="Input Video") | |
with gr.Row(): | |
with gr.Column(): | |
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks") | |
format_like, regex_pattern = generate_hex_format_regex(video_model_nbytes) | |
msg, _ = generate_hex_random_message(video_model_nbytes) | |
embedding_msg = gr.Textbox( | |
label=f"Message ({video_model_nbytes} bytes hex string)", | |
info=f"format like {format_like}", | |
value=msg, | |
interactive=False, show_copy_button=True) | |
with gr.Column(): | |
embedding_only_vid = gr.Checkbox(label="Only Video", value=False) | |
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information") | |
format_like_a, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes) | |
msg_a, _ = generate_hex_random_message(audio_generator_nbytes) | |
embedding_msg_a = gr.Textbox( | |
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)", | |
info=f"format like {format_like_a}", | |
value=msg_a, | |
interactive=False, show_copy_button=True) | |
embedding_btn = gr.Button("Embed Watermark") | |
with gr.Column(): | |
marked_vid = gr.Video(label="Output Audio", show_download_button=True) | |
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False) | |
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False) | |
def change_embedding_type(video_only): | |
return [gr.update(visible=not video_only, value=False),gr.update(visible=not video_only)] | |
embedding_only_vid.change( | |
fn=change_embedding_type, | |
inputs=[embedding_only_vid], | |
outputs=[embedding_specgram, embedding_msg_a] | |
) | |
def change_embedding_type(type): | |
if type == "random": | |
msg, _ = generate_hex_random_message(video_model_nbytes) | |
msg_a,_ = generate_hex_random_message(audio_generator_nbytes) | |
return [gr.update(interactive=False, value=msg),gr.update(interactive=False, value=msg_a)] | |
else: | |
return [gr.update(interactive=True),gr.update(interactive=True)] | |
embedding_type.change( | |
fn=change_embedding_type, | |
inputs=[embedding_type], | |
outputs=[embedding_msg, embedding_msg_a] | |
) | |
def check_embedding_msg(msg, msg_a): | |
if not re.match(regex_pattern, msg): | |
gr.Warning( | |
f"Invalid format. Please use like '{format_like}'", | |
duration=0) | |
if not re.match(regex_pattern_a, msg_a): | |
gr.Warning( | |
f"Invalid format. Please use like '{format_like_a}'", | |
duration=0) | |
embedding_msg.change( | |
fn=check_embedding_msg, | |
inputs=[embedding_msg, embedding_msg_a], | |
outputs=[] | |
) | |
def run_embed_watermark(file, video_only, show_specgram, msg, msg_a): | |
if file is None: | |
raise gr.Error("No file uploaded", duration=5) | |
if not re.match(regex_pattern, msg): | |
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5) | |
if not re.match(regex_pattern_a, msg_a): | |
raise gr.Error(f"Invalid format. Please use like '{format_like_a}'", duration=5) | |
msg_pt = generate_msg_pt_by_format_string(msg, video_model_nbytes) | |
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes) | |
video, fps, audio, rate = load_video(file) | |
output_path = file + '.marked.mp4' | |
_, audio_w = embed_watermark(output_path, msg_pt, msg_pt_a, video_only, video, fps, audio, rate) | |
if show_specgram: | |
fig_original = get_waveform_and_specgram(audio, rate) | |
fig_watermarked = get_waveform_and_specgram(audio_w, rate) | |
return [ | |
output_path, | |
gr.update(visible=True, value=fig_original), | |
gr.update(visible=True, value=fig_watermarked)] | |
else: | |
return [ | |
output_path, | |
gr.update(visible=False), | |
gr.update(visible=False)] | |
embedding_btn.click( | |
fn=run_embed_watermark, | |
inputs=[embedding_vid, embedding_only_vid, embedding_specgram, embedding_msg, embedding_msg_a], | |
outputs=[marked_vid, specgram_original, specgram_watermarked] | |
) | |
with gr.TabItem("Detect Watermark"): | |
with gr.Row(): | |
with gr.Column(): | |
detecting_vid = gr.Video(label="Input Video") | |
detecting_only_vid = gr.Checkbox(label="Only Video", value=False) | |
detecting_btn = gr.Button("Detect Watermark") | |
with gr.Column(): | |
predicted_messages = gr.JSON(label="Detected Messages") | |
def run_detect_watermark(file, video_only): | |
if file is None: | |
raise gr.Error("No file uploaded", duration=5) | |
video, _, audio, rate = load_video(file) | |
if video_only: | |
msg_extracted, _ = detect_watermark(video_only, video, audio, rate) | |
audio_json = None | |
else: | |
msg_extracted, (result, message, pred_prob, message_prob) = detect_watermark(video_only, video, audio, rate) | |
_, fromat_msg = generate_format_string_by_msg_pt(message[0], audio_generator_nbytes) | |
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1) | |
audio_json = { | |
"socre": result, | |
"message": fromat_msg, | |
"frames_count_all": pred_prob.shape[2], | |
"frames_count_above_05": sum_above_05[0].item(), | |
"bits_probability": message_prob[0].tolist(), | |
"bits_massage": message[0].tolist() | |
} | |
_, fromat_msg = generate_format_string_by_msg_pt(msg_extracted[0], video_model_nbytes) | |
# Create message output as JSON | |
message_json = { | |
"video": { | |
"message": fromat_msg, | |
}, | |
"audio:": audio_json | |
} | |
return message_json | |
detecting_btn.click( | |
fn=run_detect_watermark, | |
inputs=[detecting_vid, detecting_only_vid], | |
outputs=[predicted_messages] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |