xiaozaa's picture
add gradio demo
abf3d6e
raw
history blame
5.19 kB
import gradio as gr
from tryon_inference import run_inference
import os
import numpy as np
from PIL import Image
import tempfile
def gradio_inference(
image_data,
garment,
num_steps=50,
guidance_scale=30.0,
seed=-1,
size=(576,768)
):
"""Wrapper function for Gradio interface"""
# Use temporary directory
with tempfile.TemporaryDirectory() as tmp_dir:
# Save inputs to temp directory
temp_image = os.path.join(tmp_dir, "image.png")
temp_mask = os.path.join(tmp_dir, "mask.png")
temp_garment = os.path.join(tmp_dir, "garment.png")
# Extract image and mask from ImageEditor data
image = image_data["background"]
mask = image_data["layers"][0] # First layer contains the mask
# Convert to numpy array and process mask
mask_array = np.array(mask)
is_black = np.all(mask_array < 10, axis=2)
mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
# Save files to temp directory
image.save(temp_image)
mask.save(temp_mask)
garment.save(temp_garment)
try:
# Run inference
_, tryon_result = run_inference(
image_path=temp_image,
mask_path=temp_mask,
garment_path=temp_garment,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
size=size
)
return tryon_result
except Exception as e:
raise gr.Error(f"Error during inference: {str(e)}")
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("""
# CATVTON FLUX Virtual Try-On Demo
Upload a model image, an agnostic mask, and a garment image to generate virtual try-on results.
""")
with gr.Column():
with gr.Row():
with gr.Column():
image_input = gr.ImageMask(
label="Model Image (Draw mask where garment should go)",
type="pil",
height=576,
)
gr.Examples(
examples=[
["./example/person/00008_00.jpg"],
["./example/person/00055_00.jpg"],
["./example/person/00057_00.jpg"],
["./example/person/00067_00.jpg"],
["./example/person/00069_00.jpg"],
],
inputs=[image_input],
label="Person Images",
)
with gr.Column():
garment_input = gr.Image(label="Garment Image", type="pil", height=576)
gr.Examples(
examples=[
["./example/garment/04564_00.jpg"],
["./example/garment/00055_00.jpg"],
["./example/garment/00057_00.jpg"],
["./example/garment/00067_00.jpg"],
["./example/garment/00069_00.jpg"],
],
inputs=[garment_input],
label="Garment Images",
)
with gr.Row():
num_steps = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Number of Steps"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=50.0,
value=30.0,
step=0.5,
label="Guidance Scale"
)
seed = gr.Slider(
minimum=-1,
maximum=2147483647,
step=1,
value=-1,
label="Seed (-1 for random)"
)
submit_btn = gr.Button("Generate Try-On", variant="primary")
with gr.Column():
tryon_output = gr.Image(label="Try-On Result")
with gr.Row():
gr.Markdown("""
### Notes:
- The model image should be a full-body photo
- The mask should indicate the region where the garment will be placed
- The garment image should be on a clean background
""")
submit_btn.click(
fn=gradio_inference,
inputs=[
image_input,
garment_input,
num_steps,
guidance_scale,
seed
],
outputs=[tryon_output],
api_name="try-on"
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue() # Enable queuing for multiple users
demo.launch(
share=True,
server_name="0.0.0.0" # Makes the server accessible from other machines
)