QinOwen
fix-bug
2ad9d00
raw
history blame
43.4 kB
import argparse, os, sys, glob, yaml, math, random
sys.path.append('../') # setting path to get Core and assets
import datetime, time
import numpy as np
from omegaconf import OmegaConf
from collections import OrderedDict
from tqdm import trange, tqdm
from einops import repeat
from einops import rearrange, repeat
from functools import partial
import torch
from pytorch_lightning import seed_everything
from funcs import load_model_checkpoint, load_prompts, load_image_batch, get_filelist, save_videos, get_videos
from funcs import batch_ddim_sampling
from utils.utils import instantiate_from_config
import peft
import torchvision
from transformers.utils import ContextManagers
from transformers import AutoProcessor, AutoModel, AutoImageProcessor, AutoModelForObjectDetection, AutoModelForZeroShotObjectDetection
from Core.aesthetic_scorer import AestheticScorerDiff
from Core.actpred_scorer import ActPredScorer
from Core.weather_scorer import WeatherScorer
from Core.compression_scorer import JpegCompressionScorer, jpeg_compressibility
import Core.prompts as prompts_file
from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
import hpsv2
import bitsandbytes as bnb
from accelerate import Accelerator
from accelerate.utils import gather_object
import torch.distributed as dist
import logging
import gc
from PIL import Image
import io
import albumentations as A
from huggingface_hub import snapshot_download
import cv2
# import ipdb
# st = ipdb.set_trace
def create_output_folders(output_dir, run_name):
out_dir = os.path.join(output_dir, run_name)
os.makedirs(out_dir, exist_ok=True)
os.makedirs(f"{out_dir}/samples", exist_ok=True)
return out_dir
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything")
parser.add_argument("--mode", default="base", type=str, help="which kind of inference mode: {'base', 'i2v'}")
parser.add_argument("--ckpt_path", type=str, default='VADER-VideoCrafter/checkpoints/base_512_v2/model.ckpt', help="checkpoint path")
parser.add_argument("--config", type=str, default='VADER-VideoCrafter/configs/inference_t2v_512_v2.0.yaml', help="config (yaml) path")
parser.add_argument("--savefps", type=str, default=10, help="video fps to generate")
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
parser.add_argument("--frames", type=int, default=-1, help="frames num to inference")
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance")
## for conditional i2v only
parser.add_argument("--cond_input", type=str, default=None, help="data dir of conditional input")
## for training
parser.add_argument("--lr", type=float, default=2e-4, help="learning rate")
parser.add_argument("--val_batch_size", type=int, default=1, help="batch size for validation")
parser.add_argument("--num_val_runs", type=int, default=1, help="total number of validation samples = num_val_runs * num_gpus * num_val_batch")
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training")
parser.add_argument("--reward_fn", type=str, default="aesthetic", help="reward function: 'aesthetic', 'hps', 'aesthetic_hps', 'pick_score', 'rainy', 'snowy', 'objectDetection', 'actpred', 'compression'")
parser.add_argument("--compression_model_path", type=str, default='assets/compression_reward.pt', help="compression model path") # The compression model is used only when reward_fn is 'compression'
# The "book." is for grounding-dino model . Remember to add "." at the end of the object name for grounding-dino model.
# But for yolos model, do not add "." at the end of the object name. Instead, you should set the object name to "book" for example.
parser.add_argument("--target_object", type=str, default="book", help="target object for object detection reward function")
parser.add_argument("--detector_model", type=str, default="yolos-base", help="object detection model",
choices=["yolos-base", "yolos-tiny", "grounding-dino-base", "grounding-dino-tiny"])
parser.add_argument("--hps_version", type=str, default="v2.1", help="hps version: 'v2.0', 'v2.1'")
parser.add_argument("--prompt_fn", type=str, default="hps_custom", help="prompt function")
parser.add_argument("--nouns_file", type=str, default="simple_animals.txt", help="nouns file")
parser.add_argument("--activities_file", type=str, default="activities.txt", help="activities file")
parser.add_argument("--num_train_epochs", type=int, default=200, help="number of training epochs")
parser.add_argument("--max_train_steps", type=int, default=10000, help="max training steps")
parser.add_argument("--backprop_mode", type=str, default="last", help="backpropagation mode: 'last', 'rand', 'specific'") # backprop_mode != None also means training mode for batch_ddim_sampling
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="gradient accumulation steps")
parser.add_argument("--mixed_precision", type=str, default='fp16', help="mixed precision training: 'no', 'fp8', 'fp16', 'bf16'")
parser.add_argument("--project_dir", type=str, default="VADER-VideoCrafter/project_dir", help="project directory")
parser.add_argument("--validation_steps", type=int, default=1, help="The frequency of validation, e.g., 1 means validate every 1*accelerator.num_processes steps")
parser.add_argument("--checkpointing_steps", type=int, default=1, help="The frequency of checkpointing")
parser.add_argument("--wandb_entity", type=str, default="", help="wandb entity")
parser.add_argument("--debug", type=str2bool, default=False, help="debug mode")
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="max gradient norm")
parser.add_argument("--use_AdamW8bit", type=str2bool, default=False, help="use AdamW8bit optimizer")
parser.add_argument("--is_sample_preview", type=str2bool, default=True, help="sample preview during training")
parser.add_argument("--decode_frame", type=str, default="-1", help="decode frame: '-1', 'fml', 'all', 'alt'") # it could also be any number str like '3', '10'. alt: alternate frames, fml: first, middle, last frames, all: all frames. '-1': random frame
parser.add_argument("--inference_only", type=str2bool, default=True, help="only do inference")
parser.add_argument("--lora_ckpt_path", type=str, default=None, help="LoRA checkpoint path")
parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank")
return parser
def aesthetic_loss_fn(aesthetic_target=None,
grad_scale=0,
device=None,
torch_dtype=None):
'''
Args:
aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment
grad_scale: float, the scale of the gradient. it is 0.1 in this experiment
device: torch.device, the device to run the model.
torch_dtype: torch.dtype, the data type of the model.
Returns:
loss_fn: function, the loss function of the aesthetic reward function.
'''
target_size = (224, 224)
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
scorer = AestheticScorerDiff(dtype=torch_dtype).to(device, dtype=torch_dtype)
scorer.requires_grad_(False)
def loss_fn(im_pix_un):
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
im_pix = torchvision.transforms.Resize(target_size)(im_pix)
im_pix = normalize(im_pix).to(im_pix_un.dtype)
rewards = scorer(im_pix)
if aesthetic_target is None: # default maximization
loss = -1 * rewards
else:
# using L1 to keep on same scale
loss = abs(rewards - aesthetic_target)
return loss.mean() * grad_scale, rewards.mean()
return loss_fn
def hps_loss_fn(inference_dtype=None, device=None, hps_version="v2.0"):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment.
Returns:
loss_fn: function, the loss function of the HPS reward function.
'''
model_name = "ViT-H-14"
model, preprocess_train, preprocess_val = create_model_and_transforms(
model_name,
'laion2B-s32B-b79K',
precision=inference_dtype,
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
tokenizer = get_tokenizer(model_name)
if hps_version == "v2.0": # if there is a error, please download the model manually and set the path
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt"
else: # hps_version == "v2.1"
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt"
# force download of model via score
hpsv2.score([], "", hps_version=hps_version)
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer(model_name)
model = model.to(device, dtype=inference_dtype)
model.eval()
target_size = (224, 224)
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
def loss_fn(im_pix, prompts):
im_pix = ((im_pix / 2) + 0.5).clamp(0, 1)
x_var = torchvision.transforms.Resize(target_size)(im_pix)
x_var = normalize(x_var).to(im_pix.dtype)
caption = tokenizer(prompts)
caption = caption.to(device)
outputs = model(x_var, caption)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits = image_features @ text_features.T
scores = torch.diagonal(logits)
loss = 1.0 - scores
return loss.mean(), scores.mean()
return loss_fn
def aesthetic_hps_loss_fn(aesthetic_target=None,
grad_scale=0,
inference_dtype=None,
device=None,
hps_version="v2.0"):
'''
Args:
aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment
grad_scale: float, the scale of the gradient. it is 0.1 in this experiment
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment.
Returns:
loss_fn: function, the loss function of a combination of aesthetic and HPS reward function.
'''
# HPS
model_name = "ViT-H-14"
model, preprocess_train, preprocess_val = create_model_and_transforms(
model_name,
'laion2B-s32B-b79K',
precision=inference_dtype,
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
# tokenizer = get_tokenizer(model_name)
if hps_version == "v2.0": # if there is a error, please download the model manually and set the path
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt"
else: # hps_version == "v2.1"
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt"
# force download of model via score
hpsv2.score([], "", hps_version=hps_version)
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer(model_name)
model = model.to(device, dtype=inference_dtype)
model.eval()
target_size = (224, 224)
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
# Aesthetic
scorer = AestheticScorerDiff(dtype=inference_dtype).to(device, dtype=inference_dtype)
scorer.requires_grad_(False)
def loss_fn(im_pix_un, prompts):
# Aesthetic
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
im_pix = torchvision.transforms.Resize(target_size)(im_pix)
im_pix = normalize(im_pix).to(im_pix_un.dtype)
aesthetic_rewards = scorer(im_pix)
if aesthetic_target is None: # default maximization
aesthetic_loss = -1 * aesthetic_rewards
else:
# using L1 to keep on same scale
aesthetic_loss = abs(aesthetic_rewards - aesthetic_target)
aesthetic_loss = aesthetic_loss.mean() * grad_scale
aesthetic_rewards = aesthetic_rewards.mean()
# HPS
caption = tokenizer(prompts)
caption = caption.to(device)
outputs = model(im_pix, caption)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits = image_features @ text_features.T
scores = torch.diagonal(logits)
hps_loss = abs(1.0 - scores)
hps_loss = hps_loss.mean()
hps_rewards = scores.mean()
loss = (1.5 * aesthetic_loss + hps_loss) /2 # 1.5 is a hyperparameter. Set it to 1.5 because experimentally hps_loss is 1.5 times larger than aesthetic_loss
rewards = (aesthetic_rewards + 15 * hps_rewards) / 2 # 15 is a hyperparameter. Set it to 15 because experimentally aesthetic_rewards is 15 times larger than hps_reward
return loss, rewards
return loss_fn
def pick_score_loss_fn(inference_dtype=None, device=None):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
Returns:
loss_fn: function, the loss function of the PickScore reward function.
'''
processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1"
processor = AutoProcessor.from_pretrained(processor_name_or_path, torch_dtype=inference_dtype)
model = AutoModel.from_pretrained(model_pretrained_name_or_path, torch_dtype=inference_dtype).eval().to(device)
model.requires_grad_(False)
def loss_fn(im_pix_un, prompts): # im_pix_un: b,c,h,w
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
# reproduce the pick_score preprocessing
im_pix = im_pix * 255 # b,c,h,w
if im_pix.shape[2] < im_pix.shape[3]:
height = 224
width = im_pix.shape[3] * height // im_pix.shape[2] # keep the aspect ratio, so the width is w * 224/h
else:
width = 224
height = im_pix.shape[2] * width // im_pix.shape[3] # keep the aspect ratio, so the height is h * 224/w
# interpolation and antialiasing should be the same as below
im_pix = torchvision.transforms.Resize((height, width),
interpolation=torchvision.transforms.InterpolationMode.BICUBIC,
antialias=True)(im_pix)
im_pix = im_pix.permute(0, 2, 3, 1) # b,c,h,w -> (b,h,w,c)
# crop the center 224x224
startx = width//2 - (224//2)
starty = height//2 - (224//2)
im_pix = im_pix[:, starty:starty+224, startx:startx+224, :]
# do rescale and normalize as CLIP
im_pix = im_pix * 0.00392156862745098 # rescale factor
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device)
im_pix = (im_pix - mean) / std
im_pix = im_pix.permute(0, 3, 1, 2) # BHWC -> BCHW
text_inputs = processor(
text=prompts,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
# embed
image_embs = model.get_image_features(pixel_values=im_pix)
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
text_embs = model.get_text_features(**text_inputs)
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
# score
scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0]
loss = abs(1.0 - scores / 100.0)
return loss.mean(), scores.mean()
return loss_fn
def weather_loss_fn(inference_dtype=None, device=None, weather="rainy", target=None, grad_scale=0):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
weather: str, the weather condition. It is "rainy" or "snowy" in this experiment.
target: float, the target value of the weather score. It is 1.0 in this experiment.
grad_scale: float, the scale of the gradient. It is 1 in this experiment.
Returns:
loss_fn: function, the loss function of the weather reward function.
'''
if weather == "rainy":
reward_model_path = "../assets/rainy_reward.pt"
elif weather == "snowy":
reward_model_path = "../assets/snowy_reward.pt"
else:
raise NotImplementedError
scorer = WeatherScorer(dtype=inference_dtype, model_path=reward_model_path).to(device, dtype=inference_dtype)
scorer.requires_grad_(False)
scorer.eval()
def loss_fn(im_pix_un):
im_pix = ((im_pix_un + 1) / 2).clamp(0, 1) # from [-1, 1] to [0, 1]
rewards = scorer(im_pix)
if target is None:
loss = rewards
else:
loss = abs(rewards - target)
return loss.mean() * grad_scale, rewards.mean()
return loss_fn
def objectDetection_loss_fn(inference_dtype=None, device=None, targetObject='dog.', model_name='grounding-dino-base'):
'''
This reward function is used to remove the target object from the generated video.
We use yolo-s-tiny model to detect the target object in the generated video.
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
targetObject: str, the object to detect. It is "dog" in this experiment.
Returns:
loss_fn: function, the loss function of the object detection reward function.
'''
if model_name == "yolos-base":
image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype)
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for yolos model
if "." in targetObject:
raise ValueError("The targetObject name should not contain '.' for yolos-base model.")
elif model_name == "yolos-tiny":
image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype)
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for yolos model
if "." in targetObject:
raise ValueError("The targetObject name should not contain '.' for yolos-tiny model.")
elif model_name == "grounding-dino-base":
image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base", torch_dtype=inference_dtype)
model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base",torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for grounding-dino model
if "." not in targetObject:
raise ValueError("The targetObject name should contain '.' for grounding-dino-base model.")
elif model_name == "grounding-dino-tiny":
image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype)
model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype).to(device)
# check if "." in the targetObject name for grounding-dino model
if "." not in targetObject:
raise ValueError("The targetObject name should contain '.' for grounding-dino-tiny model.")
else:
raise NotImplementedError
model.requires_grad_(False)
model.eval()
def loss_fn(im_pix_un): # im_pix_un: b,c,h,w
images = ((im_pix_un / 2) + 0.5).clamp(0.0, 1.0)
# reproduce the yolo preprocessing
height = 512
width = 512 * images.shape[3] // images.shape[2] # keep the aspect ratio, so the width is 512 * w/h
images = torchvision.transforms.Resize((height, width), antialias=False)(images)
images = images.permute(0, 2, 3, 1) # b,c,h,w -> (b,h,w,c)
image_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
image_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
images = (images - image_mean) / image_std
normalized_image = images.permute(0,3,1,2) # NHWC -> NCHW
# Process images
if model_name == "yolos-base" or model_name == "yolos-tiny":
outputs = model(pixel_values=normalized_image)
else: # grounding-dino model
inputs = image_processor(text=targetObject, return_tensors="pt").to(device)
outputs = model(pixel_values=normalized_image, input_ids=inputs.input_ids)
# Get target sizes for each image
target_sizes = torch.tensor([normalized_image[0].shape[1:]]*normalized_image.shape[0]).to(device)
# Post-process results for each image
if model_name == "yolos-base" or model_name == "yolos-tiny":
results = image_processor.post_process_object_detection(outputs, threshold=0.2, target_sizes=target_sizes)
else: # grounding-dino model
results = image_processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.4,
text_threshold=0.3,
target_sizes=target_sizes
)
sum_avg_scores = 0
for i, result in enumerate(results):
if model_name == "yolos-base" or model_name == "yolos-tiny":
id = model.config.label2id[targetObject]
# get index of targetObject's label
index = torch.where(result["labels"] == id)
if len(index[0]) == 0: # index: ([],[]) so index[0] is the first list
sum_avg_scores = torch.sum(outputs.logits - outputs.logits) # set sum_avg_scores to 0
continue
scores = result["scores"][index]
else: # grounding-dino model
if result["scores"].shape[0] == 0:
sum_avg_scores = torch.sum(outputs.last_hidden_state - outputs.last_hidden_state) # set sum_avg_scores to 0
continue
scores = result["scores"]
sum_avg_scores = sum_avg_scores + (torch.sum(scores) / scores.shape[0])
loss = sum_avg_scores / len(results)
reward = 1 - loss
return loss, reward
return loss_fn
def compression_loss_fn(inference_dtype=None, device=None, target=None, grad_scale=0, model_path=None):
'''
Args:
inference_dtype: torch.dtype, the data type of the model.
device: torch.device, the device to run the model.
model_path: str, the path of the compression model.
Returns:
loss_fn: function, the loss function of the compression reward function.
'''
scorer = JpegCompressionScorer(dtype=inference_dtype, model_path=model_path).to(device, dtype=inference_dtype)
scorer.requires_grad_(False)
scorer.eval()
def loss_fn(im_pix_un):
im_pix = ((im_pix_un + 1) / 2).clamp(0, 1)
rewards = scorer(im_pix)
if target is None:
loss = rewards
else:
loss = abs(rewards - target)
return loss.mean() * grad_scale, rewards.mean()
return loss_fn
def actpred_loss_fn(inference_dtype=None, device=None, num_frames = 14, target_size=224):
scorer = ActPredScorer(device=device, num_frames = num_frames, dtype=inference_dtype)
scorer.requires_grad_(False)
def preprocess_img(img):
img = ((img/2) + 0.5).clamp(0,1)
img = torchvision.transforms.Resize((target_size, target_size), antialias = True)(img)
img = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
return img
def loss_fn(vid, target_action_label):
vid = torch.cat([preprocess_img(img).unsqueeze(0) for img in vid])[None]
return scorer.get_loss_and_score(vid, target_action_label)
return loss_fn
def should_sample(global_step, validation_steps, is_sample_preview):
return (global_step % validation_steps == 0 or global_step ==1) \
and is_sample_preview
# def run_training(args, model, **kwargs):
# ## ---------------------step 1: setup---------------------------
# output_dir = args.project_dir
# # step 2.1: add LoRA using peft
# config = peft.LoraConfig(
# r=args.lora_rank,
# target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
# lora_dropout=0.01,
# )
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = model.to(device)
# peft_model = peft.get_peft_model(model, config)
# # load the pretrained LoRA model
# if args.lora_ckpt_path != "Base Model":
# if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
# snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
# args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
# elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
# snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
# args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
# # load the pretrained LoRA model
# peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
# # peft_model.first_stage_model.to(device)
# peft_model.eval()
# print("device is: ", device)
# print("precision: ", peft_model.dtype)
# # precision of first_stage_model
# print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
# print("peft_model device: ", peft_model.device)
# # Inference Step: only do inference and save the videos. Skip this step if it is training
# # ==================================================================
# # sample shape
# assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
# # latent noise shape
# h, w = args.height // 8, args.width // 8
# frames = peft_model.temporal_length if args.frames < 0 else args.frames
# channels = peft_model.channels
# ## Inference step 2: run Inference over samples
# print("***** Running inference *****")
# ## Inference Step 3: generate new validation videos
# with torch.no_grad():
# # set random seed for each process
# random.seed(args.seed)
# torch.manual_seed(args.seed)
# prompts_all = [args.prompt_str]
# val_prompt = list(prompts_all)
# assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!"
# # store output of generations in dict
# results=dict(filenames=[],dir_name=[], prompt=[])
# # Inference Step 3.1: forward pass
# batch_size = len(val_prompt)
# noise_shape = [batch_size, channels, frames, h, w]
# fps = torch.tensor([args.fps]*batch_size).to(device).long()
# prompts = val_prompt
# if isinstance(prompts, str):
# prompts = [prompts]
# # mix precision
# if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
# text_emb = peft_model.module.get_learned_conditioning(prompts).to(device)
# else:
# text_emb = peft_model.get_learned_conditioning(prompts).to(device)
# if args.mode == 'base':
# cond = {"c_crossattn": [text_emb], "fps": fps}
# else: # TODO: implement i2v mode training in the future
# raise NotImplementedError
# # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
# # no backprop_mode=args.backprop_mode because it is inference process
# batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
# args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
# print("batch_samples dtype: ", batch_samples.dtype)
# print("batch_samples device: ", batch_samples.device)
# # batch_samples: b,samples,c,t,h,w
# dir_name = os.path.join(output_dir, "samples")
# # filenames should be related to the gpu index
# # get timestamps for filenames to avoid overwriting
# # current_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
# filenames = [f"temporal"] # only one sample
# # if dir_name is not exists, create it
# os.makedirs(dir_name, exist_ok=True)
# save_videos(batch_samples, dir_name, filenames, fps=args.savefps)
# results["filenames"].extend(filenames)
# results["dir_name"].extend([dir_name]*len(filenames))
# results["prompt"].extend(prompts)
# results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
# # Inference Step 3.3: collect inference results and save the videos to wandb
# # collect inference results from all the GPUs
# results_gathered=gather_object(results)
# filenames = []
# dir_name = []
# prompts = []
# for i in range(len(results_gathered)):
# filenames.extend(results_gathered[i]["filenames"])
# dir_name.extend(results_gathered[i]["dir_name"])
# prompts.extend(results_gathered[i]["prompt"])
# print("Validation sample saved!")
# # # batch size is 1, so only one video is generated
# # video = get_videos(batch_samples)
# # # read the video from the saved path
# video_path = os.path.join(dir_name[0], filenames[0]+".mp4")
# # release memory
# del batch_samples
# torch.cuda.empty_cache()
# gc.collect()
# return video_path
# # end of inference only, training script continues
# # ==================================================================
def run_training(args, model, **kwargs):
## ---------------------step 1: accelerator setup---------------------------
accelerator = Accelerator( # Initialize Accelerator
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
project_dir=args.project_dir,
device_placement=True,
cpu=False
)
output_dir = args.project_dir
# step 2.1: add LoRA using peft
config = peft.LoraConfig(
r=args.lora_rank,
target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
lora_dropout=0.01,
)
model = model.to(accelerator.device)
peft_model = peft.get_peft_model(model, config)
peft_model.print_trainable_parameters()
# load the pretrained LoRA model
if args.lora_ckpt_path != "Base Model":
if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
# load the pretrained LoRA model
peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
print("precision: ", peft_model.dtype)
# precision of first_stage_model
print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
print("peft_model device: ", peft_model.device)
# Inference Step: only do inference and save the videos. Skip this step if it is training
# ==================================================================
if args.inference_only:
peft_model = accelerator.prepare(peft_model)
print("precision: ", peft_model.dtype)
# precision of first_stage_model
print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
print("peft_model device: ", peft_model.device)
# sample shape
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
# latent noise shape
h, w = args.height // 8, args.width // 8
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
frames = peft_model.module.temporal_length if args.frames < 0 else args.frames
channels = peft_model.module.channels
else:
frames = peft_model.temporal_length if args.frames < 0 else args.frames
channels = peft_model.channels
## Inference step 2: run Inference over samples
print("***** Running inference *****")
first_epoch = 0
global_step = 0
## Inference Step 3: generate new validation videos
with torch.no_grad():
prompts_all = [args.prompt_str]
val_prompt = list(prompts_all)
assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!"
# store output of generations in dict
results=dict(filenames=[],dir_name=[], prompt=[])
# Inference Step 3.1: forward pass
batch_size = len(val_prompt)
noise_shape = [batch_size, channels, frames, h, w]
fps = torch.tensor([args.fps]*batch_size).to(accelerator.device).long()
prompts = val_prompt
if isinstance(prompts, str):
prompts = [prompts]
with accelerator.autocast(): # mixed precision
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
text_emb = peft_model.module.get_learned_conditioning(prompts).to(accelerator.device)
else:
text_emb = peft_model.get_learned_conditioning(prompts).to(accelerator.device)
if args.mode == 'base':
cond = {"c_crossattn": [text_emb], "fps": fps}
else: # TODO: implement i2v mode training in the future
raise NotImplementedError
# Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
# no backprop_mode=args.backprop_mode because it is inference process
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
else:
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
print("batch_samples dtype: ", batch_samples.dtype)
print("batch_samples device: ", batch_samples.device)
# batch_samples: b,samples,c,t,h,w
dir_name = os.path.join(output_dir, "samples")
# filenames should be related to the gpu index
# get timestamps for filenames to avoid overwriting
# current_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filenames = [f"temporal"] # only one sample
# if dir_name is not exists, create it
os.makedirs(dir_name, exist_ok=True)
save_videos(batch_samples, dir_name, filenames, fps=args.savefps)
results["filenames"].extend(filenames)
results["dir_name"].extend([dir_name]*len(filenames))
results["prompt"].extend(prompts)
results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
# Inference Step 3.3: collect inference results and save the videos to wandb
# collect inference results from all the GPUs
results_gathered=gather_object(results)
if accelerator.is_main_process:
filenames = []
dir_name = []
prompts = []
for i in range(len(results_gathered)):
filenames.extend(results_gathered[i]["filenames"])
dir_name.extend(results_gathered[i]["dir_name"])
prompts.extend(results_gathered[i]["prompt"])
print("Validation sample saved!")
# # batch size is 1, so only one video is generated
# video = get_videos(batch_samples)
# # read the video from the saved path
video_path = os.path.join(dir_name[0], filenames[0]+".mp4")
# release memory
del batch_samples
torch.cuda.empty_cache()
gc.collect()
return video_path
def setup_model():
parser = get_parser()
args = parser.parse_args()
## ------------------------step 2: model config-----------------------------
# download the checkpoint for VideoCrafter2 model
ckpt_dir = args.ckpt_path.split('/') # args.ckpt='checkpoints/base_512_v2/model.ckpt' -> 'checkpoints/base_512_v2'
ckpt_dir = '/'.join(ckpt_dir[:-1])
snapshot_download(repo_id='VideoCrafter/VideoCrafter2', local_dir=ckpt_dir)
# load the model
config = OmegaConf.load(args.config)
model_config = config.pop("model", OmegaConf.create())
model = instantiate_from_config(model_config)
assert os.path.exists(args.ckpt_path), f"Error: checkpoint [{args.ckpt_path}] Not Found!"
model = load_model_checkpoint(model, args.ckpt_path)
# convert first_stage_model and cond_stage_model to torch.float16 if mixed_precision is True
if args.mixed_precision != 'no':
model.first_stage_model = model.first_stage_model.half()
model.cond_stage_model = model.cond_stage_model.half()
print("Model setup complete!")
print("model dtype: ", model.dtype)
return model
def main_fn(prompt, lora_model, lora_rank, seed=200, height=320, width=512, unconditional_guidance_scale=12, ddim_steps=25, ddim_eta=1.0,
frames=24, savefps=10, model=None):
parser = get_parser()
args = parser.parse_args()
# overwrite the default arguments
args.prompt_str = prompt
args.lora_ckpt_path = lora_model
args.lora_rank = lora_rank
args.seed = seed
args.height = height
args.width = width
args.unconditional_guidance_scale = unconditional_guidance_scale
args.ddim_steps = ddim_steps
args.ddim_eta = ddim_eta
args.frames = frames
args.savefps = savefps
seed_everything(args.seed)
video_path = run_training(args, model)
return video_path
# if main
if __name__ == "__main__":
model = setup_model()
main_fn("a person walking on the street", "huggingface-hps-aesthetic", 16, 200, 320, 512, 12, 25, 1.0, 24, 10, model=model)