Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import logging | |
import math | |
import os | |
import spaces | |
import cv2 | |
import numpy as np | |
import nvdiffrast.torch as dr | |
import torch | |
import torch.nn.functional as F | |
import trimesh | |
import xatlas | |
from PIL import Image | |
from asset3d_gen.data.mesh_operator import MeshFixer | |
from asset3d_gen.data.utils import ( | |
CameraSetting, | |
DiffrastRender, | |
get_images_from_grid, | |
init_kal_camera, | |
normalize_vertices_array, | |
post_process_texture, | |
save_mesh_with_mtl, | |
) | |
from asset3d_gen.models.delight_model import DelightingModel | |
from asset3d_gen.models.sr_model import ImageRealESRGAN | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO | |
) | |
logger = logging.getLogger(__name__) | |
__all__ = [ | |
"TextureBacker", | |
] | |
def transform_vertices( | |
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False | |
) -> torch.Tensor: | |
"""Transform 3D vertices using a projection matrix.""" | |
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype) | |
if pos.size(-1) == 3: | |
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1) | |
result = pos @ t_mtx.T | |
return result if keepdim else result.unsqueeze(0) | |
def _bilinear_interpolation_scattering( | |
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor | |
) -> torch.Tensor: | |
"""Bilinear interpolation scattering for grid-based value accumulation.""" | |
device = values.device | |
dtype = values.dtype | |
C = values.shape[-1] | |
indices = coords * torch.tensor( | |
[image_h - 1, image_w - 1], dtype=dtype, device=device | |
) | |
i, j = indices.unbind(-1) | |
i0, j0 = ( | |
indices.floor() | |
.long() | |
.clamp(0, image_h - 2) | |
.clamp(0, image_w - 2) | |
.unbind(-1) | |
) | |
i1, j1 = i0 + 1, j0 + 1 | |
w_i = i - i0.float() | |
w_j = j - j0.float() | |
weights = torch.stack( | |
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j], | |
dim=1, | |
) | |
indices_comb = torch.stack( | |
[ | |
torch.stack([i0, j0], dim=1), | |
torch.stack([i0, j1], dim=1), | |
torch.stack([i1, j0], dim=1), | |
torch.stack([i1, j1], dim=1), | |
], | |
dim=1, | |
) | |
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype) | |
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype) | |
for k in range(4): | |
idx = indices_comb[:, k] | |
w = weights[:, k].unsqueeze(-1) | |
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long) | |
flat_idx = (idx * stride).sum(-1) | |
grid.view(-1, C).scatter_add_( | |
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w | |
) | |
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w) | |
mask = cnt.squeeze(-1) > 0 | |
grid[mask] = grid[mask] / cnt[mask].repeat(1, C) | |
return grid | |
def _texture_inpaint_smooth( | |
texture: np.ndarray, | |
mask: np.ndarray, | |
vertices: np.ndarray, | |
faces: np.ndarray, | |
uv_map: np.ndarray, | |
) -> tuple[np.ndarray, np.ndarray]: | |
"""Perform texture inpainting using vertex-based color propagation.""" | |
image_h, image_w, C = texture.shape | |
N = vertices.shape[0] | |
# Initialize vertex data structures | |
vtx_mask = np.zeros(N, dtype=np.float32) | |
vtx_colors = np.zeros((N, C), dtype=np.float32) | |
unprocessed = [] | |
adjacency = [[] for _ in range(N)] | |
# Build adjacency graph and initial color assignment | |
for face_idx in range(faces.shape[0]): | |
for k in range(3): | |
uv_idx_k = faces[face_idx, k] | |
v_idx = faces[face_idx, k] | |
# Convert UV to pixel coordinates with boundary clamping | |
u = np.clip( | |
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1 | |
) | |
v = np.clip( | |
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))), | |
0, | |
image_h - 1, | |
) | |
if mask[v, u]: | |
vtx_mask[v_idx] = 1.0 | |
vtx_colors[v_idx] = texture[v, u] | |
elif v_idx not in unprocessed: | |
unprocessed.append(v_idx) | |
# Build undirected adjacency graph | |
neighbor = faces[face_idx, (k + 1) % 3] | |
if neighbor not in adjacency[v_idx]: | |
adjacency[v_idx].append(neighbor) | |
if v_idx not in adjacency[neighbor]: | |
adjacency[neighbor].append(v_idx) | |
# Color propagation with dynamic stopping | |
remaining_iters, prev_count = 2, 0 | |
while remaining_iters > 0: | |
current_unprocessed = [] | |
for v_idx in unprocessed: | |
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0] | |
if not valid_neighbors: | |
current_unprocessed.append(v_idx) | |
continue | |
# Calculate inverse square distance weights | |
neighbors_pos = vertices[valid_neighbors] | |
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1) | |
weights = 1 / np.maximum(dist_sq, 1e-8) | |
vtx_colors[v_idx] = np.average( | |
vtx_colors[valid_neighbors], weights=weights, axis=0 | |
) | |
vtx_mask[v_idx] = 1.0 | |
# Update iteration control | |
if len(current_unprocessed) == prev_count: | |
remaining_iters -= 1 | |
else: | |
remaining_iters = min(remaining_iters + 1, 2) | |
prev_count = len(current_unprocessed) | |
unprocessed = current_unprocessed | |
# Generate output texture | |
inpainted_texture, updated_mask = texture.copy(), mask.copy() | |
for face_idx in range(faces.shape[0]): | |
for k in range(3): | |
v_idx = faces[face_idx, k] | |
if not vtx_mask[v_idx]: | |
continue | |
# UV coordinate conversion | |
uv_idx_k = faces[face_idx, k] | |
u = np.clip( | |
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1 | |
) | |
v = np.clip( | |
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))), | |
0, | |
image_h - 1, | |
) | |
inpainted_texture[v, u] = vtx_colors[v_idx] | |
updated_mask[v, u] = 255 | |
return inpainted_texture, updated_mask | |
class TextureBacker: | |
"""Texture baking pipeline for multi-view projection and fusion.""" | |
def __init__( | |
self, | |
camera_params: CameraSetting, | |
view_weights: list[float], | |
render_wh: tuple[int, int] = (2048, 2048), | |
texture_wh: tuple[int, int] = (2048, 2048), | |
bake_angle_thresh: int = 75, | |
mask_thresh: float = 0.5, | |
): | |
camera = init_kal_camera(camera_params) | |
mv = camera.view_matrix() # (n 4 4) world2cam | |
p = camera.intrinsics.projection_matrix() | |
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa | |
p[:, 1, 1] = -p[:, 1, 1] | |
renderer = DiffrastRender( | |
p_matrix=p, | |
mv_matrix=mv, | |
resolution_hw=camera_params.resolution_hw, | |
context=dr.RasterizeCudaContext(), | |
mask_thresh=mask_thresh, | |
grad_db=False, | |
device=camera_params.device, | |
antialias_mask=True, | |
) | |
self.camera = camera | |
self.renderer = renderer | |
self.view_weights = view_weights | |
self.device = camera_params.device | |
self.render_wh = render_wh | |
self.texture_wh = texture_wh | |
self.bake_angle_thresh = bake_angle_thresh | |
self.bake_unreliable_kernel_size = int( | |
(2 / 512) * max(self.render_wh[0], self.render_wh[1]) | |
) | |
def load_mesh(self, mesh: trimesh.Trimesh) -> trimesh.Trimesh: | |
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices) | |
self.scale, self.center = scale, center | |
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces) | |
uvs[:, 1] = 1 - uvs[:, 1] | |
mesh.vertices = mesh.vertices[vmapping] | |
mesh.faces = indices | |
mesh.visual.uv = uvs | |
return mesh | |
def get_mesh_np_attrs( | |
self, | |
scale: float = None, | |
center: np.ndarray = None, | |
) -> tuple[np.ndarray, np.ndarray, np.ndarray]: | |
vertices = self.vertices.cpu().numpy() | |
faces = self.faces.cpu().numpy() | |
uv_map = self.uv_map.cpu().numpy() | |
uv_map[:, 1] = 1.0 - uv_map[:, 1] | |
if scale is not None: | |
vertices = vertices / scale | |
if center is not None: | |
vertices = vertices + center | |
return vertices, faces, uv_map | |
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor: | |
depth_image_np = depth_image.cpu().numpy() | |
depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
sketch_image = ( | |
torch.from_numpy(depth_edges).to(depth_image.device).float() / 255 | |
) | |
sketch_image = sketch_image.unsqueeze(-1) | |
return sketch_image | |
def compute_enhanced_viewnormal( | |
self, mv_mtx: torch.Tensor, vertices: torch.Tensor, faces: torch.Tensor | |
) -> torch.Tensor: | |
rast, _ = self.renderer.compute_dr_raster(vertices, faces) | |
rendered_view_normals = [] | |
for idx in range(len(mv_mtx)): | |
pos_cam = transform_vertices(mv_mtx[idx], vertices, keepdim=True) | |
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:] | |
v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3)) | |
face_norm = F.normalize( | |
torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1 | |
) | |
vertex_norm = ( | |
torch.from_numpy( | |
trimesh.geometry.mean_vertex_normals( | |
len(pos_cam), faces.cpu(), face_norm.cpu() | |
) | |
) | |
.to(vertices.device) | |
.contiguous() | |
) | |
im_base_normals, _ = dr.interpolate( | |
vertex_norm[None, ...].float(), | |
rast[idx : idx + 1], | |
faces.to(torch.int32), | |
) | |
rendered_view_normals.append(im_base_normals) | |
rendered_view_normals = torch.cat(rendered_view_normals, dim=0) | |
return rendered_view_normals | |
def back_project( | |
self, image, vis_mask, depth, normal, uv | |
) -> tuple[torch.Tensor, torch.Tensor]: | |
image = np.array(image) | |
image = torch.as_tensor(image, device=self.device, dtype=torch.float32) | |
if image.ndim == 2: | |
image = image.unsqueeze(-1) | |
image = image / 255 | |
depth_inv = (1.0 - depth) * vis_mask | |
sketch_image = self._render_depth_edges(depth_inv) | |
cos = F.cosine_similarity( | |
torch.tensor([[0, 0, 1]], device=self.device), | |
normal.view(-1, 3), | |
).view_as(normal[..., :1]) | |
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0 | |
k = self.bake_unreliable_kernel_size * 2 + 1 | |
kernel = torch.ones((1, 1, k, k), device=self.device) | |
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float() | |
vis_mask = F.conv2d( | |
1.0 - vis_mask, | |
kernel, | |
padding=k // 2, | |
) | |
vis_mask = 1.0 - (vis_mask > 0).float() | |
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0) | |
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0) | |
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2) | |
sketch_image = (sketch_image > 0).float() | |
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0) | |
vis_mask = vis_mask * (sketch_image < 0.5) | |
cos[vis_mask == 0] = 0 | |
valid_pixels = (vis_mask != 0).view(-1) | |
return ( | |
self._scatter_texture(uv, image, valid_pixels), | |
self._scatter_texture(uv, cos, valid_pixels), | |
) | |
def _scatter_texture(self, uv, data, mask): | |
def __filter_data(data, mask): | |
return data.view(-1, data.shape[-1])[mask] | |
return _bilinear_interpolation_scattering( | |
self.texture_wh[1], | |
self.texture_wh[0], | |
__filter_data(uv, mask)[..., [1, 0]], | |
__filter_data(data, mask), | |
) | |
def fast_bake_texture( | |
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor] | |
) -> tuple[torch.Tensor, torch.Tensor]: | |
channel = textures[0].shape[-1] | |
texture_merge = torch.zeros(self.texture_wh + [channel]).to( | |
self.device | |
) | |
trust_map_merge = torch.zeros(self.texture_wh + [1]).to(self.device) | |
for texture, cos_map in zip(textures, confidence_maps): | |
view_sum = (cos_map > 0).sum() | |
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum() | |
if painted_sum / view_sum > 0.99: | |
continue | |
texture_merge += texture * cos_map | |
trust_map_merge += cos_map | |
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8) | |
return texture_merge, trust_map_merge > 1e-8 | |
def uv_inpaint( | |
self, texture: np.ndarray, mask: np.ndarray | |
) -> np.ndarray: | |
vertices, faces, uv_map = self.get_mesh_np_attrs() | |
texture, mask = _texture_inpaint_smooth( | |
texture, mask, vertices, faces, uv_map | |
) | |
texture = texture.clip(0, 1) | |
texture = cv2.inpaint( | |
(texture * 255).astype(np.uint8), | |
255 - mask, | |
3, | |
cv2.INPAINT_NS, | |
) | |
return texture | |
def cuda_forward( | |
self, | |
colors: list[Image.Image], | |
mesh: trimesh.Trimesh, | |
) -> trimesh.Trimesh: | |
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float() | |
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int) | |
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float() | |
rendered_depth, masks = self.renderer.render_depth( | |
self.vertices, self.faces | |
) | |
norm_deps = self.renderer.normalize_map_by_mask(rendered_depth, masks) | |
render_uvs, _ = self.renderer.render_uv( | |
self.vertices, self.faces, self.uv_map | |
) | |
view_normals = self.compute_enhanced_viewnormal( | |
self.renderer.mv_mtx, self.vertices, self.faces | |
) | |
textures, weighted_cos_maps = [], [] | |
for color, mask, dep, normal, uv, weight in zip( | |
colors, | |
masks, | |
norm_deps, | |
view_normals, | |
render_uvs, | |
self.view_weights, | |
): | |
texture, cos_map = self.back_project(color, mask, dep, normal, uv) | |
textures.append(texture) | |
weighted_cos_maps.append(weight * (cos_map**4)) | |
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps) | |
texture_np = texture.cpu().numpy() | |
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8) | |
return texture_np, mask_np | |
def __call__( | |
self, | |
colors: list[Image.Image], | |
mesh: trimesh.Trimesh, | |
output_path: str, | |
) -> trimesh.Trimesh: | |
mesh = self.load_mesh(mesh) | |
texture_np, mask_np = self.cuda_forward(colors, mesh) | |
texture_np = self.uv_inpaint(texture_np, mask_np) | |
texture_np = post_process_texture(texture_np) | |
vertices, faces, uv_map = self.get_mesh_np_attrs( | |
self.scale, self.center | |
) | |
textured_mesh = save_mesh_with_mtl( | |
vertices, faces, uv_map, texture_np, output_path | |
) | |
return textured_mesh | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Backproject texture") | |
parser.add_argument( | |
"--color_path", | |
type=str, | |
help="Multiview color image in 6x512x512 file path", | |
) | |
parser.add_argument( | |
"--mesh_path", | |
type=str, | |
help="Mesh path, .obj, .glb or .ply", | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
help="Output mesh path with suffix", | |
) | |
parser.add_argument( | |
"--num_images", type=int, default=6, help="Number of images to render." | |
) | |
parser.add_argument( | |
"--elevation", | |
nargs=2, | |
type=float, | |
default=[20.0, -10.0], | |
help="Elevation angles for the camera (default: [20.0, -10.0])", | |
) | |
parser.add_argument( | |
"--distance", | |
type=float, | |
default=5, | |
help="Camera distance (default: 5)", | |
) | |
parser.add_argument( | |
"--resolution_hw", | |
type=int, | |
nargs=2, | |
default=(2048, 2048), | |
help="Resolution of the output images (default: (2048, 2048))", | |
) | |
parser.add_argument( | |
"--fov", | |
type=float, | |
default=30, | |
help="Field of view in degrees (default: 30)", | |
) | |
parser.add_argument( | |
"--device", | |
type=str, | |
choices=["cpu", "cuda"], | |
default="cuda", | |
help="Device to run on (default: `cuda`)", | |
) | |
parser.add_argument( | |
"--skip_fix_mesh", action="store_true", help="Fix mesh geometry." | |
) | |
parser.add_argument( | |
"--texture_wh", | |
nargs=2, | |
type=int, | |
default=[2048, 2048], | |
help="Texture resolution width and height", | |
) | |
parser.add_argument( | |
"--mesh_sipmlify_ratio", | |
type=float, | |
default=0.9, | |
help="Mesh simplification ratio (default: 0.9)", | |
) | |
parser.add_argument( | |
"--delight", action="store_true", help="Use delighting model." | |
) | |
args = parser.parse_args() | |
return args | |
def entrypoint( | |
delight_model: DelightingModel = None, | |
imagesr_model: ImageRealESRGAN = None, | |
**kwargs, | |
) -> trimesh.Trimesh: | |
args = parse_args() | |
for k, v in kwargs.items(): | |
if hasattr(args, k) and v is not None: | |
setattr(args, k, v) | |
# Setup camera parameters. | |
camera_params = CameraSetting( | |
num_images=args.num_images, | |
elevation=args.elevation, | |
distance=args.distance, | |
resolution_hw=args.resolution_hw, | |
fov=math.radians(args.fov), | |
device=args.device, | |
) | |
view_weights = [1, 0.1, 0.02, 0.1, 1, 0.02] | |
color_grid = Image.open(args.color_path) | |
if args.delight: | |
if delight_model is None: | |
delight_model = DelightingModel( | |
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa | |
) | |
save_dir = os.path.dirname(args.output_path) | |
os.makedirs(save_dir, exist_ok=True) | |
color_grid = delight_model(color_grid) | |
color_grid.save(f"{save_dir}/color_grid_delight.png") | |
multiviews = get_images_from_grid(color_grid, img_size=512) | |
# Use RealESRGAN_x4plus for x4 (512->2048) image super resolution. | |
if imagesr_model is None: | |
imagesr_model = ImageRealESRGAN(outscale=4) | |
multiviews = [imagesr_model(img) for img in multiviews] | |
multiviews = [img.convert("RGB") for img in multiviews] | |
mesh = trimesh.load(args.mesh_path) | |
if isinstance(mesh, trimesh.Scene): | |
mesh = mesh.dump(concatenate=True) | |
if not args.skip_fix_mesh: | |
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices) | |
mesh_fixer = MeshFixer(mesh.vertices, mesh.faces, args.device) | |
mesh.vertices, mesh.faces = mesh_fixer( | |
filter_ratio=args.mesh_sipmlify_ratio, | |
max_hole_size=0.04, | |
resolution=1024, | |
num_views=1000, | |
norm_mesh_ratio=0.5, | |
) | |
# Restore scale. | |
mesh.vertices = mesh.vertices / scale | |
mesh.vertices = mesh.vertices + center | |
# Baking texture to mesh. | |
texture_backer = TextureBacker( | |
camera_params=camera_params, | |
view_weights=view_weights, | |
render_wh=camera_params.resolution_hw, | |
texture_wh=args.texture_wh, | |
) | |
textured_mesh = texture_backer(multiviews, mesh, args.output_path) | |
return textured_mesh | |
if __name__ == "__main__": | |
entrypoint() | |