ImgRoboAssetGen / asset3d_gen /data /backproject_v2.py
xinjie.wang
update
146eff7
import argparse
import logging
import math
import os
import spaces
import cv2
import numpy as np
import nvdiffrast.torch as dr
import torch
import torch.nn.functional as F
import trimesh
import xatlas
from PIL import Image
from asset3d_gen.data.mesh_operator import MeshFixer
from asset3d_gen.data.utils import (
CameraSetting,
DiffrastRender,
get_images_from_grid,
init_kal_camera,
normalize_vertices_array,
post_process_texture,
save_mesh_with_mtl,
)
from asset3d_gen.models.delight_model import DelightingModel
from asset3d_gen.models.sr_model import ImageRealESRGAN
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
__all__ = [
"TextureBacker",
]
def transform_vertices(
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
) -> torch.Tensor:
"""Transform 3D vertices using a projection matrix."""
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
if pos.size(-1) == 3:
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
result = pos @ t_mtx.T
return result if keepdim else result.unsqueeze(0)
def _bilinear_interpolation_scattering(
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
) -> torch.Tensor:
"""Bilinear interpolation scattering for grid-based value accumulation."""
device = values.device
dtype = values.dtype
C = values.shape[-1]
indices = coords * torch.tensor(
[image_h - 1, image_w - 1], dtype=dtype, device=device
)
i, j = indices.unbind(-1)
i0, j0 = (
indices.floor()
.long()
.clamp(0, image_h - 2)
.clamp(0, image_w - 2)
.unbind(-1)
)
i1, j1 = i0 + 1, j0 + 1
w_i = i - i0.float()
w_j = j - j0.float()
weights = torch.stack(
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
dim=1,
)
indices_comb = torch.stack(
[
torch.stack([i0, j0], dim=1),
torch.stack([i0, j1], dim=1),
torch.stack([i1, j0], dim=1),
torch.stack([i1, j1], dim=1),
],
dim=1,
)
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)
for k in range(4):
idx = indices_comb[:, k]
w = weights[:, k].unsqueeze(-1)
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
flat_idx = (idx * stride).sum(-1)
grid.view(-1, C).scatter_add_(
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
)
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)
mask = cnt.squeeze(-1) > 0
grid[mask] = grid[mask] / cnt[mask].repeat(1, C)
return grid
def _texture_inpaint_smooth(
texture: np.ndarray,
mask: np.ndarray,
vertices: np.ndarray,
faces: np.ndarray,
uv_map: np.ndarray,
) -> tuple[np.ndarray, np.ndarray]:
"""Perform texture inpainting using vertex-based color propagation."""
image_h, image_w, C = texture.shape
N = vertices.shape[0]
# Initialize vertex data structures
vtx_mask = np.zeros(N, dtype=np.float32)
vtx_colors = np.zeros((N, C), dtype=np.float32)
unprocessed = []
adjacency = [[] for _ in range(N)]
# Build adjacency graph and initial color assignment
for face_idx in range(faces.shape[0]):
for k in range(3):
uv_idx_k = faces[face_idx, k]
v_idx = faces[face_idx, k]
# Convert UV to pixel coordinates with boundary clamping
u = np.clip(
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
)
v = np.clip(
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
0,
image_h - 1,
)
if mask[v, u]:
vtx_mask[v_idx] = 1.0
vtx_colors[v_idx] = texture[v, u]
elif v_idx not in unprocessed:
unprocessed.append(v_idx)
# Build undirected adjacency graph
neighbor = faces[face_idx, (k + 1) % 3]
if neighbor not in adjacency[v_idx]:
adjacency[v_idx].append(neighbor)
if v_idx not in adjacency[neighbor]:
adjacency[neighbor].append(v_idx)
# Color propagation with dynamic stopping
remaining_iters, prev_count = 2, 0
while remaining_iters > 0:
current_unprocessed = []
for v_idx in unprocessed:
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
if not valid_neighbors:
current_unprocessed.append(v_idx)
continue
# Calculate inverse square distance weights
neighbors_pos = vertices[valid_neighbors]
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
weights = 1 / np.maximum(dist_sq, 1e-8)
vtx_colors[v_idx] = np.average(
vtx_colors[valid_neighbors], weights=weights, axis=0
)
vtx_mask[v_idx] = 1.0
# Update iteration control
if len(current_unprocessed) == prev_count:
remaining_iters -= 1
else:
remaining_iters = min(remaining_iters + 1, 2)
prev_count = len(current_unprocessed)
unprocessed = current_unprocessed
# Generate output texture
inpainted_texture, updated_mask = texture.copy(), mask.copy()
for face_idx in range(faces.shape[0]):
for k in range(3):
v_idx = faces[face_idx, k]
if not vtx_mask[v_idx]:
continue
# UV coordinate conversion
uv_idx_k = faces[face_idx, k]
u = np.clip(
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
)
v = np.clip(
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
0,
image_h - 1,
)
inpainted_texture[v, u] = vtx_colors[v_idx]
updated_mask[v, u] = 255
return inpainted_texture, updated_mask
class TextureBacker:
"""Texture baking pipeline for multi-view projection and fusion."""
def __init__(
self,
camera_params: CameraSetting,
view_weights: list[float],
render_wh: tuple[int, int] = (2048, 2048),
texture_wh: tuple[int, int] = (2048, 2048),
bake_angle_thresh: int = 75,
mask_thresh: float = 0.5,
):
camera = init_kal_camera(camera_params)
mv = camera.view_matrix() # (n 4 4) world2cam
p = camera.intrinsics.projection_matrix()
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
p[:, 1, 1] = -p[:, 1, 1]
renderer = DiffrastRender(
p_matrix=p,
mv_matrix=mv,
resolution_hw=camera_params.resolution_hw,
context=dr.RasterizeCudaContext(),
mask_thresh=mask_thresh,
grad_db=False,
device=camera_params.device,
antialias_mask=True,
)
self.camera = camera
self.renderer = renderer
self.view_weights = view_weights
self.device = camera_params.device
self.render_wh = render_wh
self.texture_wh = texture_wh
self.bake_angle_thresh = bake_angle_thresh
self.bake_unreliable_kernel_size = int(
(2 / 512) * max(self.render_wh[0], self.render_wh[1])
)
def load_mesh(self, mesh: trimesh.Trimesh) -> trimesh.Trimesh:
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
self.scale, self.center = scale, center
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
uvs[:, 1] = 1 - uvs[:, 1]
mesh.vertices = mesh.vertices[vmapping]
mesh.faces = indices
mesh.visual.uv = uvs
return mesh
def get_mesh_np_attrs(
self,
scale: float = None,
center: np.ndarray = None,
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
vertices = self.vertices.cpu().numpy()
faces = self.faces.cpu().numpy()
uv_map = self.uv_map.cpu().numpy()
uv_map[:, 1] = 1.0 - uv_map[:, 1]
if scale is not None:
vertices = vertices / scale
if center is not None:
vertices = vertices + center
return vertices, faces, uv_map
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
depth_image_np = depth_image.cpu().numpy()
depth_image_np = (depth_image_np * 255).astype(np.uint8)
depth_edges = cv2.Canny(depth_image_np, 30, 80)
sketch_image = (
torch.from_numpy(depth_edges).to(depth_image.device).float() / 255
)
sketch_image = sketch_image.unsqueeze(-1)
return sketch_image
def compute_enhanced_viewnormal(
self, mv_mtx: torch.Tensor, vertices: torch.Tensor, faces: torch.Tensor
) -> torch.Tensor:
rast, _ = self.renderer.compute_dr_raster(vertices, faces)
rendered_view_normals = []
for idx in range(len(mv_mtx)):
pos_cam = transform_vertices(mv_mtx[idx], vertices, keepdim=True)
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3))
face_norm = F.normalize(
torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1
)
vertex_norm = (
torch.from_numpy(
trimesh.geometry.mean_vertex_normals(
len(pos_cam), faces.cpu(), face_norm.cpu()
)
)
.to(vertices.device)
.contiguous()
)
im_base_normals, _ = dr.interpolate(
vertex_norm[None, ...].float(),
rast[idx : idx + 1],
faces.to(torch.int32),
)
rendered_view_normals.append(im_base_normals)
rendered_view_normals = torch.cat(rendered_view_normals, dim=0)
return rendered_view_normals
def back_project(
self, image, vis_mask, depth, normal, uv
) -> tuple[torch.Tensor, torch.Tensor]:
image = np.array(image)
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
if image.ndim == 2:
image = image.unsqueeze(-1)
image = image / 255
depth_inv = (1.0 - depth) * vis_mask
sketch_image = self._render_depth_edges(depth_inv)
cos = F.cosine_similarity(
torch.tensor([[0, 0, 1]], device=self.device),
normal.view(-1, 3),
).view_as(normal[..., :1])
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
k = self.bake_unreliable_kernel_size * 2 + 1
kernel = torch.ones((1, 1, k, k), device=self.device)
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
vis_mask = F.conv2d(
1.0 - vis_mask,
kernel,
padding=k // 2,
)
vis_mask = 1.0 - (vis_mask > 0).float()
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
sketch_image = (sketch_image > 0).float()
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
vis_mask = vis_mask * (sketch_image < 0.5)
cos[vis_mask == 0] = 0
valid_pixels = (vis_mask != 0).view(-1)
return (
self._scatter_texture(uv, image, valid_pixels),
self._scatter_texture(uv, cos, valid_pixels),
)
def _scatter_texture(self, uv, data, mask):
def __filter_data(data, mask):
return data.view(-1, data.shape[-1])[mask]
return _bilinear_interpolation_scattering(
self.texture_wh[1],
self.texture_wh[0],
__filter_data(uv, mask)[..., [1, 0]],
__filter_data(data, mask),
)
@torch.no_grad()
def fast_bake_texture(
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
) -> tuple[torch.Tensor, torch.Tensor]:
channel = textures[0].shape[-1]
texture_merge = torch.zeros(self.texture_wh + [channel]).to(
self.device
)
trust_map_merge = torch.zeros(self.texture_wh + [1]).to(self.device)
for texture, cos_map in zip(textures, confidence_maps):
view_sum = (cos_map > 0).sum()
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
if painted_sum / view_sum > 0.99:
continue
texture_merge += texture * cos_map
trust_map_merge += cos_map
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
return texture_merge, trust_map_merge > 1e-8
def uv_inpaint(
self, texture: np.ndarray, mask: np.ndarray
) -> np.ndarray:
vertices, faces, uv_map = self.get_mesh_np_attrs()
texture, mask = _texture_inpaint_smooth(
texture, mask, vertices, faces, uv_map
)
texture = texture.clip(0, 1)
texture = cv2.inpaint(
(texture * 255).astype(np.uint8),
255 - mask,
3,
cv2.INPAINT_NS,
)
return texture
@spaces.GPU
def cuda_forward(
self,
colors: list[Image.Image],
mesh: trimesh.Trimesh,
) -> trimesh.Trimesh:
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
rendered_depth, masks = self.renderer.render_depth(
self.vertices, self.faces
)
norm_deps = self.renderer.normalize_map_by_mask(rendered_depth, masks)
render_uvs, _ = self.renderer.render_uv(
self.vertices, self.faces, self.uv_map
)
view_normals = self.compute_enhanced_viewnormal(
self.renderer.mv_mtx, self.vertices, self.faces
)
textures, weighted_cos_maps = [], []
for color, mask, dep, normal, uv, weight in zip(
colors,
masks,
norm_deps,
view_normals,
render_uvs,
self.view_weights,
):
texture, cos_map = self.back_project(color, mask, dep, normal, uv)
textures.append(texture)
weighted_cos_maps.append(weight * (cos_map**4))
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
texture_np = texture.cpu().numpy()
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
return texture_np, mask_np
def __call__(
self,
colors: list[Image.Image],
mesh: trimesh.Trimesh,
output_path: str,
) -> trimesh.Trimesh:
mesh = self.load_mesh(mesh)
texture_np, mask_np = self.cuda_forward(colors, mesh)
texture_np = self.uv_inpaint(texture_np, mask_np)
texture_np = post_process_texture(texture_np)
vertices, faces, uv_map = self.get_mesh_np_attrs(
self.scale, self.center
)
textured_mesh = save_mesh_with_mtl(
vertices, faces, uv_map, texture_np, output_path
)
return textured_mesh
def parse_args():
parser = argparse.ArgumentParser(description="Backproject texture")
parser.add_argument(
"--color_path",
type=str,
help="Multiview color image in 6x512x512 file path",
)
parser.add_argument(
"--mesh_path",
type=str,
help="Mesh path, .obj, .glb or .ply",
)
parser.add_argument(
"--output_path",
type=str,
help="Output mesh path with suffix",
)
parser.add_argument(
"--num_images", type=int, default=6, help="Number of images to render."
)
parser.add_argument(
"--elevation",
nargs=2,
type=float,
default=[20.0, -10.0],
help="Elevation angles for the camera (default: [20.0, -10.0])",
)
parser.add_argument(
"--distance",
type=float,
default=5,
help="Camera distance (default: 5)",
)
parser.add_argument(
"--resolution_hw",
type=int,
nargs=2,
default=(2048, 2048),
help="Resolution of the output images (default: (2048, 2048))",
)
parser.add_argument(
"--fov",
type=float,
default=30,
help="Field of view in degrees (default: 30)",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda"],
default="cuda",
help="Device to run on (default: `cuda`)",
)
parser.add_argument(
"--skip_fix_mesh", action="store_true", help="Fix mesh geometry."
)
parser.add_argument(
"--texture_wh",
nargs=2,
type=int,
default=[2048, 2048],
help="Texture resolution width and height",
)
parser.add_argument(
"--mesh_sipmlify_ratio",
type=float,
default=0.9,
help="Mesh simplification ratio (default: 0.9)",
)
parser.add_argument(
"--delight", action="store_true", help="Use delighting model."
)
args = parser.parse_args()
return args
def entrypoint(
delight_model: DelightingModel = None,
imagesr_model: ImageRealESRGAN = None,
**kwargs,
) -> trimesh.Trimesh:
args = parse_args()
for k, v in kwargs.items():
if hasattr(args, k) and v is not None:
setattr(args, k, v)
# Setup camera parameters.
camera_params = CameraSetting(
num_images=args.num_images,
elevation=args.elevation,
distance=args.distance,
resolution_hw=args.resolution_hw,
fov=math.radians(args.fov),
device=args.device,
)
view_weights = [1, 0.1, 0.02, 0.1, 1, 0.02]
color_grid = Image.open(args.color_path)
if args.delight:
if delight_model is None:
delight_model = DelightingModel(
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa
)
save_dir = os.path.dirname(args.output_path)
os.makedirs(save_dir, exist_ok=True)
color_grid = delight_model(color_grid)
color_grid.save(f"{save_dir}/color_grid_delight.png")
multiviews = get_images_from_grid(color_grid, img_size=512)
# Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
if imagesr_model is None:
imagesr_model = ImageRealESRGAN(outscale=4)
multiviews = [imagesr_model(img) for img in multiviews]
multiviews = [img.convert("RGB") for img in multiviews]
mesh = trimesh.load(args.mesh_path)
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump(concatenate=True)
if not args.skip_fix_mesh:
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
mesh_fixer = MeshFixer(mesh.vertices, mesh.faces, args.device)
mesh.vertices, mesh.faces = mesh_fixer(
filter_ratio=args.mesh_sipmlify_ratio,
max_hole_size=0.04,
resolution=1024,
num_views=1000,
norm_mesh_ratio=0.5,
)
# Restore scale.
mesh.vertices = mesh.vertices / scale
mesh.vertices = mesh.vertices + center
# Baking texture to mesh.
texture_backer = TextureBacker(
camera_params=camera_params,
view_weights=view_weights,
render_wh=camera_params.resolution_hw,
texture_wh=args.texture_wh,
)
textured_mesh = texture_backer(multiviews, mesh, args.output_path)
return textured_mesh
if __name__ == "__main__":
entrypoint()