ImgRoboAssetGen / asset3d_gen /data /differentiable_render.py
xinjie.wang
update
146eff7
import argparse
import json
import logging
import math
import os
from collections import defaultdict
from typing import List, Union
import cv2
import imageio
import numpy as np
import nvdiffrast.torch as dr
import torch
from PIL import Image
from tqdm import tqdm
from asset3d_gen.data.utils import (
CameraSetting,
DiffrastRender,
RenderItems,
as_list,
calc_vertex_normals,
import_kaolin_mesh,
init_kal_camera,
normalize_vertices_array,
render_pbr,
save_images,
)
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
os.environ["TORCH_EXTENSIONS_DIR"] = os.path.expanduser(
"~/.cache/torch_extensions"
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
def create_gif_from_images(images, output_path, fps=10):
pil_images = []
for image in images:
image = image.clip(min=0, max=1)
image = (255.0 * image).astype(np.uint8)
image = Image.fromarray(image, mode="RGBA")
pil_images.append(image.convert("RGB"))
duration = 1000 // fps
pil_images[0].save(
output_path,
save_all=True,
append_images=pil_images[1:],
duration=duration,
loop=0,
)
logger.info(f"GIF saved to {output_path}")
def create_mp4_from_images(images, output_path, fps=10, prompt=None):
font = cv2.FONT_HERSHEY_SIMPLEX # 字体样式
font_scale = 0.5 # 字体大小
font_thickness = 1 # 字体粗细
color = (255, 255, 255) # 文字颜色(白色)
position = (20, 25) # 左上角坐标 (x, y)
with imageio.get_writer(output_path, fps=fps) as writer:
for image in images:
image = image.clip(min=0, max=1)
image = (255.0 * image).astype(np.uint8)
image = image[..., :3]
if prompt is not None:
cv2.putText(
image,
prompt,
position,
font,
font_scale,
color,
font_thickness,
)
writer.append_data(image)
logger.info(f"MP4 video saved to {output_path}")
class ImageRender(object):
def __init__(
self,
render_items: list[RenderItems],
camera_params: CameraSetting,
recompute_vtx_normal: bool = True,
device: str = "cuda",
with_mtl: bool = False,
gen_color_gif: bool = False,
gen_color_mp4: bool = False,
gen_viewnormal_mp4: bool = False,
gen_glonormal_mp4: bool = False,
no_index_file: bool = False,
light_factor: float = 1.0,
) -> None:
camera_params.device = device
camera = init_kal_camera(camera_params)
self.camera = camera
# Setup MVP matrix and renderer.
mv = camera.view_matrix() # (n 4 4) world2cam
p = camera.intrinsics.projection_matrix()
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
p[:, 1, 1] = -p[:, 1, 1]
# mvp = torch.bmm(p, mv) # camera.view_projection_matrix()
self.mv = mv
self.p = p
renderer = DiffrastRender(
p_matrix=p,
mv_matrix=mv,
resolution_hw=camera_params.resolution_hw,
context=dr.RasterizeCudaContext(),
mask_thresh=0.5,
grad_db=False,
device=camera_params.device,
antialias_mask=True,
)
self.renderer = renderer
self.recompute_vtx_normal = recompute_vtx_normal
self.render_items = render_items
self.device = device
self.with_mtl = with_mtl
self.gen_color_gif = gen_color_gif
self.gen_color_mp4 = gen_color_mp4
self.gen_viewnormal_mp4 = gen_viewnormal_mp4
self.gen_glonormal_mp4 = gen_glonormal_mp4
self.light_factor = light_factor
self.no_index_file = no_index_file
def render_mesh(
self,
mesh_path: Union[str, List[str]],
output_root: str,
uuid: Union[str, List[str]] = None,
prompts: List[str] = None,
) -> None:
mesh_path = as_list(mesh_path)
if uuid is None:
uuid = [os.path.basename(p).split(".")[0] for p in mesh_path]
uuid = as_list(uuid)
assert len(mesh_path) == len(uuid)
os.makedirs(output_root, exist_ok=True)
meta_info = dict()
for idx, (path, uid) in tqdm(
enumerate(zip(mesh_path, uuid)), total=len(mesh_path)
):
output_dir = os.path.join(output_root, uid)
os.makedirs(output_dir, exist_ok=True)
prompt = prompts[idx] if prompts else None
data_dict = self(path, output_dir, prompt)
meta_info[uid] = data_dict
if self.no_index_file:
return
index_file = os.path.join(output_root, "index.json")
with open(index_file, "w") as fout:
json.dump(meta_info, fout)
logger.info(f"Rendering meta info logged in {index_file}")
def __call__(
self, mesh_path: str, output_dir: str, prompt: str = None
) -> dict[str, str]:
try:
mesh = import_kaolin_mesh(mesh_path, self.with_mtl)
except Exception as e:
logger.error(f"[ERROR MESH LOAD]: {e}, skip {mesh_path}")
return
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
if self.recompute_vtx_normal:
mesh.vertex_normals = calc_vertex_normals(
mesh.vertices, mesh.faces
)
mesh = mesh.to(self.device)
vertices, faces, vertex_normals = (
mesh.vertices,
mesh.faces,
mesh.vertex_normals,
)
# Perform rendering.
data_dict = defaultdict(list)
if RenderItems.ALPHA.value in self.render_items:
masks, _ = self.renderer.render_rast_alpha(vertices, faces)
render_paths = save_images(
masks, f"{output_dir}/{RenderItems.ALPHA}"
)
data_dict[RenderItems.ALPHA.value] = render_paths
if RenderItems.GLOBAL_NORMAL.value in self.render_items:
rendered_normals, masks = self.renderer.render_global_normal(
vertices, faces, vertex_normals
)
if self.gen_glonormal_mp4:
if isinstance(rendered_normals, torch.Tensor):
rendered_normals = rendered_normals.detach().cpu().numpy()
create_mp4_from_images(
rendered_normals,
output_path=f"{output_dir}/normal.mp4",
fps=15,
prompt=prompt,
)
else:
render_paths = save_images(
rendered_normals,
f"{output_dir}/{RenderItems.GLOBAL_NORMAL}",
cvt_color=cv2.COLOR_BGR2RGB,
)
data_dict[RenderItems.GLOBAL_NORMAL.value] = render_paths
if RenderItems.VIEW_NORMAL.value in self.render_items:
assert (
RenderItems.GLOBAL_NORMAL in self.render_items
), f"Must render global normal firstly, got render_items: {self.render_items}." # noqa
rendered_view_normals = self.renderer.transform_normal(
rendered_normals, self.mv, masks, to_view=True
)
# rendered_inv_view_normals = renderer.transform_normal(rendered_view_normals, torch.linalg.inv(mv), masks, to_view=False) # noqa
if self.gen_viewnormal_mp4:
create_mp4_from_images(
rendered_view_normals,
output_path=f"{output_dir}/view_normal.mp4",
fps=15,
prompt=prompt,
)
else:
render_paths = save_images(
rendered_view_normals,
f"{output_dir}/{RenderItems.VIEW_NORMAL}",
cvt_color=cv2.COLOR_BGR2RGB,
)
data_dict[RenderItems.VIEW_NORMAL.value] = render_paths
if RenderItems.POSITION_MAP.value in self.render_items:
rendered_position, masks = self.renderer.render_position(
vertices, faces
)
norm_position = self.renderer.normalize_map_by_mask(
rendered_position, masks
)
render_paths = save_images(
norm_position,
f"{output_dir}/{RenderItems.POSITION_MAP}",
cvt_color=cv2.COLOR_BGR2RGB,
)
data_dict[RenderItems.POSITION_MAP.value] = render_paths
if RenderItems.DEPTH.value in self.render_items:
rendered_depth, masks = self.renderer.render_depth(vertices, faces)
norm_depth = self.renderer.normalize_map_by_mask(
rendered_depth, masks
)
render_paths = save_images(
norm_depth,
f"{output_dir}/{RenderItems.DEPTH}",
)
data_dict[RenderItems.DEPTH.value] = render_paths
render_paths = save_images(
rendered_depth,
f"{output_dir}/{RenderItems.DEPTH}_exr",
to_uint8=False,
format=".exr",
)
data_dict[f"{RenderItems.DEPTH.value}_exr"] = render_paths
if RenderItems.IMAGE.value in self.render_items:
images = []
albedos = []
diffuses = []
masks, _ = self.renderer.render_rast_alpha(vertices, faces)
try:
for idx, cam in enumerate(self.camera):
image, albedo, diffuse, _ = render_pbr(
mesh, cam, light_factor=self.light_factor
)
image = torch.cat([image[0], masks[idx]], axis=-1)
images.append(image.detach().cpu().numpy())
if RenderItems.ALBEDO.value in self.render_items:
albedo = torch.cat([albedo[0], masks[idx]], axis=-1)
albedos.append(albedo.detach().cpu().numpy())
if RenderItems.DIFFUSE.value in self.render_items:
diffuse = torch.cat([diffuse[0], masks[idx]], axis=-1)
diffuses.append(diffuse.detach().cpu().numpy())
except Exception as e:
logger.error(f"[ERROR pbr render]: {e}, skip {mesh_path}")
return
if self.gen_color_gif:
create_gif_from_images(
images,
output_path=f"{output_dir}/color.gif",
fps=15,
)
if self.gen_color_mp4:
create_mp4_from_images(
images,
output_path=f"{output_dir}/color.mp4",
fps=15,
prompt=prompt,
)
if self.gen_color_mp4 or self.gen_color_gif:
return data_dict
render_paths = save_images(
images,
f"{output_dir}/{RenderItems.IMAGE}",
cvt_color=cv2.COLOR_BGRA2RGBA,
)
data_dict[RenderItems.IMAGE.value] = render_paths
render_paths = save_images(
albedos,
f"{output_dir}/{RenderItems.ALBEDO}",
cvt_color=cv2.COLOR_BGRA2RGBA,
)
data_dict[RenderItems.ALBEDO.value] = render_paths
render_paths = save_images(
diffuses,
f"{output_dir}/{RenderItems.DIFFUSE}",
cvt_color=cv2.COLOR_BGRA2RGBA,
)
data_dict[RenderItems.DIFFUSE.value] = render_paths
data_dict["status"] = "success"
logger.info(f"Finish rendering in {output_dir}")
return data_dict
def parse_args():
parser = argparse.ArgumentParser(description="Render settings")
parser.add_argument(
"--mesh_path",
type=str,
nargs="+",
help="Paths to the mesh files for rendering.",
)
parser.add_argument(
"--output_root",
type=str,
help="Root directory for output",
)
parser.add_argument(
"--uuid",
type=str,
nargs="+",
default=None,
help="uuid for rendering saving.",
)
parser.add_argument(
"--num_images", type=int, default=6, help="Number of images to render."
)
parser.add_argument(
"--elevation",
type=float,
nargs="+",
default=[20.0, -10.0],
help="Elevation angles for the camera (default: [20.0, -10.0])",
)
parser.add_argument(
"--distance",
type=float,
default=5,
help="Camera distance (default: 5)",
)
parser.add_argument(
"--resolution_hw",
type=int,
nargs=2,
default=(512, 512),
help="Resolution of the output images (default: (512, 512))",
)
parser.add_argument(
"--fov",
type=float,
default=30,
help="Field of view in degrees (default: 30)",
)
parser.add_argument(
"--pbr_light_factor",
type=float,
default=1.0,
help="Light factor for mesh PBR rendering (default: 2.)",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda"],
default="cuda",
help="Device to run on (default: 'cuda')",
)
parser.add_argument(
"--with_mtl",
action="store_true",
help="Whether to render with mesh material.",
)
parser.add_argument(
"--gen_color_gif",
action="store_true",
help="Whether to generate color .gif rendering file.",
)
parser.add_argument(
"--gen_color_mp4",
action="store_true",
help="Whether to generate color .mp4 rendering file.",
)
parser.add_argument(
"--gen_viewnormal_mp4",
action="store_true",
help="Whether to generate view normal .mp4 rendering file.",
)
parser.add_argument(
"--gen_glonormal_mp4",
action="store_true",
help="Whether to generate global normal .mp4 rendering file.",
)
parser.add_argument(
"--prompts",
type=str,
nargs="+",
default=None,
help="Text prompts for the rendering.",
)
args = parser.parse_args()
if args.uuid is None and args.mesh_path is not None:
args.uuid = []
for path in args.mesh_path:
uuid = os.path.basename(path).split(".")[0]
args.uuid.append(uuid)
return args
def entrypoint(**kwargs) -> None:
args = parse_args()
for k, v in kwargs.items():
if hasattr(args, k) and v is not None:
setattr(args, k, v)
camera_settings = CameraSetting(
num_images=args.num_images,
elevation=args.elevation,
distance=args.distance,
resolution_hw=args.resolution_hw,
fov=math.radians(args.fov),
device=args.device,
)
render_items = [
RenderItems.ALPHA.value,
RenderItems.GLOBAL_NORMAL.value,
RenderItems.VIEW_NORMAL.value,
RenderItems.POSITION_MAP.value,
RenderItems.IMAGE.value,
RenderItems.DEPTH.value,
# RenderItems.ALBEDO.value,
# RenderItems.DIFFUSE.value,
]
gen_video = (
args.gen_color_gif
or args.gen_color_mp4
or args.gen_viewnormal_mp4
or args.gen_glonormal_mp4
)
if gen_video:
render_items = []
if args.gen_color_gif or args.gen_color_mp4:
render_items.append(RenderItems.IMAGE.value)
if args.gen_glonormal_mp4:
render_items.append(RenderItems.GLOBAL_NORMAL.value)
if args.gen_viewnormal_mp4:
render_items.append(RenderItems.VIEW_NORMAL.value)
if RenderItems.GLOBAL_NORMAL.value not in render_items:
render_items.append(RenderItems.GLOBAL_NORMAL.value)
image_render = ImageRender(
render_items=render_items,
camera_params=camera_settings,
with_mtl=args.with_mtl,
gen_color_gif=args.gen_color_gif,
gen_color_mp4=args.gen_color_mp4,
gen_viewnormal_mp4=args.gen_viewnormal_mp4,
gen_glonormal_mp4=args.gen_glonormal_mp4,
light_factor=args.pbr_light_factor,
no_index_file=gen_video,
)
image_render.render_mesh(
mesh_path=args.mesh_path,
output_root=args.output_root,
uuid=args.uuid,
prompts=args.prompts,
)
return
if __name__ == "__main__":
entrypoint()