Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from typing import Tuple, Union | |
import spaces | |
import igraph | |
import numpy as np | |
import pyvista as pv | |
import torch | |
import utils3d | |
from pymeshfix import _meshfix | |
from tqdm import tqdm | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO | |
) | |
logger = logging.getLogger(__name__) | |
__all__ = ["MeshFixer"] | |
def radical_inverse(base, n): | |
val = 0 | |
inv_base = 1.0 / base | |
inv_base_n = inv_base | |
while n > 0: | |
digit = n % base | |
val += digit * inv_base_n | |
n //= base | |
inv_base_n *= inv_base | |
return val | |
def halton_sequence(dim, n): | |
PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53] | |
return [radical_inverse(PRIMES[dim], n) for dim in range(dim)] | |
def hammersley_sequence(dim, n, num_samples): | |
return [n / num_samples] + halton_sequence(dim - 1, n) | |
def sphere_hammersley_sequence(n, num_samples, offset=(0, 0), remap=False): | |
"""Generate a point on a unit sphere using the Hammersley sequence. | |
Args: | |
n (int): The index of the sample. | |
num_samples (int): The total number of samples. | |
offset (tuple, optional): Offset for the u and v coordinates. | |
remap (bool, optional): Whether to remap the u coordinate. | |
Returns: | |
list: A list containing the spherical coordinates [phi, theta]. | |
""" | |
u, v = hammersley_sequence(2, n, num_samples) | |
u += offset[0] / num_samples | |
v += offset[1] | |
if remap: | |
u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3 | |
theta = np.arccos(1 - 2 * u) - np.pi / 2 | |
phi = v * 2 * np.pi | |
return [phi, theta] | |
class MeshFixer(object): | |
"""Reduce and postprocess 3D meshes, simplifying and filling holes.""" | |
def __init__( | |
self, | |
vertices: Union[torch.Tensor, np.ndarray], | |
faces: Union[torch.Tensor, np.ndarray], | |
device: str = "cuda", | |
) -> None: | |
self.device = device | |
self.vertices = ( | |
torch.tensor(vertices, device=device) | |
if isinstance(vertices, np.ndarray) | |
else vertices.to(device) | |
) | |
self.faces = ( | |
torch.tensor(faces.astype(np.int32), device=device) | |
if isinstance(faces, np.ndarray) | |
else faces.to(device) | |
) | |
def log_mesh_changes(method): | |
def wrapper(self, *args, **kwargs): | |
logger.info( | |
f"Before {method.__name__}: {self.vertices.shape[0]} vertices, {self.faces.shape[0]} faces" # noqa | |
) | |
result = method(self, *args, **kwargs) | |
logger.info( | |
f"After {method.__name__}: {self.vertices.shape[0]} vertices, {self.faces.shape[0]} faces" # noqa | |
) | |
return result | |
return wrapper | |
def fill_holes( | |
self, | |
max_hole_size: float, | |
max_hole_nbe: int, | |
resolution: int, | |
num_views: int, | |
norm_mesh_ratio: float = 1.0, | |
) -> None: | |
self.vertices = self.vertices * norm_mesh_ratio | |
vertices, self.faces = self._fill_holes( | |
self.vertices, | |
self.faces, | |
max_hole_size, | |
max_hole_nbe, | |
resolution, | |
num_views, | |
) | |
self.vertices = vertices / norm_mesh_ratio | |
def _fill_holes( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
max_hole_size: float, | |
max_hole_nbe: int, | |
resolution: int, | |
num_views: int, | |
) -> Union[torch.Tensor, torch.Tensor]: | |
yaws, pitchs = [], [] | |
for i in range(num_views): | |
y, p = sphere_hammersley_sequence(i, num_views) | |
yaws.append(y) | |
pitchs.append(p) | |
yaws, pitchs = torch.tensor(yaws).to(vertices), torch.tensor( | |
pitchs | |
).to(vertices) | |
radius, fov = 2.0, torch.deg2rad(torch.tensor(40)).to(vertices) | |
projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3) | |
views = [] | |
for yaw, pitch in zip(yaws, pitchs): | |
orig = ( | |
torch.tensor( | |
[ | |
torch.sin(yaw) * torch.cos(pitch), | |
torch.cos(yaw) * torch.cos(pitch), | |
torch.sin(pitch), | |
] | |
).to(vertices) | |
* radius | |
) | |
view = utils3d.torch.view_look_at( | |
orig, | |
torch.tensor([0, 0, 0]).to(vertices), | |
torch.tensor([0, 0, 1]).to(vertices), | |
) | |
views.append(view) | |
views = torch.stack(views, dim=0) | |
# Rasterize the mesh | |
visibility = torch.zeros( | |
faces.shape[0], dtype=torch.int32, device=faces.device | |
) | |
rastctx = utils3d.torch.RastContext(backend="cuda") | |
for i in tqdm( | |
range(views.shape[0]), total=views.shape[0], desc="Rasterizing" | |
): | |
view = views[i] | |
buffers = utils3d.torch.rasterize_triangle_faces( | |
rastctx, | |
vertices[None], | |
faces, | |
resolution, | |
resolution, | |
view=view, | |
projection=projection, | |
) | |
face_id = buffers["face_id"][0][buffers["mask"][0] > 0.95] - 1 | |
face_id = torch.unique(face_id).long() | |
visibility[face_id] += 1 | |
# Normalize visibility by the number of views | |
visibility = visibility.float() / num_views | |
# Mincut: Identify outer and inner faces | |
edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces) | |
boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1) | |
connected_components = utils3d.torch.compute_connected_components( | |
faces, edges, face2edge | |
) | |
outer_face_indices = torch.zeros( | |
faces.shape[0], dtype=torch.bool, device=faces.device | |
) | |
for i in range(len(connected_components)): | |
outer_face_indices[connected_components[i]] = visibility[ | |
connected_components[i] | |
] > min( | |
max( | |
visibility[connected_components[i]].quantile(0.75).item(), | |
0.25, | |
), | |
0.5, | |
) | |
outer_face_indices = outer_face_indices.nonzero().reshape(-1) | |
inner_face_indices = torch.nonzero(visibility == 0).reshape(-1) | |
if inner_face_indices.shape[0] == 0: | |
return vertices, faces | |
# Construct dual graph (faces as nodes, edges as edges) | |
dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph( | |
face2edge | |
) | |
dual_edge2edge = edges[dual_edge2edge] | |
dual_edges_weights = torch.norm( | |
vertices[dual_edge2edge[:, 0]] - vertices[dual_edge2edge[:, 1]], | |
dim=1, | |
) | |
# Mincut: Construct main graph and solve the mincut problem | |
g = igraph.Graph() | |
g.add_vertices(faces.shape[0]) | |
g.add_edges(dual_edges.cpu().numpy()) | |
g.es["weight"] = dual_edges_weights.cpu().numpy() | |
g.add_vertex("s") # source | |
g.add_vertex("t") # target | |
g.add_edges( | |
[(f, "s") for f in inner_face_indices], | |
attributes={ | |
"weight": torch.ones( | |
inner_face_indices.shape[0], dtype=torch.float32 | |
) | |
.cpu() | |
.numpy() | |
}, | |
) | |
g.add_edges( | |
[(f, "t") for f in outer_face_indices], | |
attributes={ | |
"weight": torch.ones( | |
outer_face_indices.shape[0], dtype=torch.float32 | |
) | |
.cpu() | |
.numpy() | |
}, | |
) | |
cut = g.mincut("s", "t", (np.array(g.es["weight"]) * 1000).tolist()) | |
remove_face_indices = torch.tensor( | |
[v for v in cut.partition[0] if v < faces.shape[0]], | |
dtype=torch.long, | |
device=faces.device, | |
) | |
# Check if the cut is valid with each connected component | |
to_remove_cc = utils3d.torch.compute_connected_components( | |
faces[remove_face_indices] | |
) | |
valid_remove_cc = [] | |
cutting_edges = [] | |
for cc in to_remove_cc: | |
# Check visibility median for connected component | |
visibility_median = visibility[remove_face_indices[cc]].median() | |
if visibility_median > 0.25: | |
continue | |
# Check if the cutting loop is small enough | |
cc_edge_indices, cc_edges_degree = torch.unique( | |
face2edge[remove_face_indices[cc]], return_counts=True | |
) | |
cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1] | |
cc_new_boundary_edge_indices = cc_boundary_edge_indices[ | |
~torch.isin(cc_boundary_edge_indices, boundary_edge_indices) | |
] | |
if len(cc_new_boundary_edge_indices) > 0: | |
cc_new_boundary_edge_cc = ( | |
utils3d.torch.compute_edge_connected_components( | |
edges[cc_new_boundary_edge_indices] | |
) | |
) | |
cc_new_boundary_edges_cc_center = [ | |
vertices[edges[cc_new_boundary_edge_indices[edge_cc]]] | |
.mean(dim=1) | |
.mean(dim=0) | |
for edge_cc in cc_new_boundary_edge_cc | |
] | |
cc_new_boundary_edges_cc_area = [] | |
for i, edge_cc in enumerate(cc_new_boundary_edge_cc): | |
_e1 = ( | |
vertices[ | |
edges[cc_new_boundary_edge_indices[edge_cc]][:, 0] | |
] | |
- cc_new_boundary_edges_cc_center[i] | |
) | |
_e2 = ( | |
vertices[ | |
edges[cc_new_boundary_edge_indices[edge_cc]][:, 1] | |
] | |
- cc_new_boundary_edges_cc_center[i] | |
) | |
cc_new_boundary_edges_cc_area.append( | |
torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum() | |
* 0.5 | |
) | |
cutting_edges.append(cc_new_boundary_edge_indices) | |
if any( | |
[ | |
_l > max_hole_size | |
for _l in cc_new_boundary_edges_cc_area | |
] | |
): | |
continue | |
valid_remove_cc.append(cc) | |
if len(valid_remove_cc) > 0: | |
remove_face_indices = remove_face_indices[ | |
torch.cat(valid_remove_cc) | |
] | |
mask = torch.ones( | |
faces.shape[0], dtype=torch.bool, device=faces.device | |
) | |
mask[remove_face_indices] = 0 | |
faces = faces[mask] | |
faces, vertices = utils3d.torch.remove_unreferenced_vertices( | |
faces, vertices | |
) | |
tqdm.write(f"Removed {(~mask).sum()} faces by mincut") | |
else: | |
tqdm.write(f"Removed 0 faces by mincut") | |
# Fill small boundaries (holes) | |
mesh = _meshfix.PyTMesh() | |
mesh.load_array(vertices.cpu().numpy(), faces.cpu().numpy()) | |
mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True) | |
_vertices, _faces = mesh.return_arrays() | |
vertices = torch.tensor(_vertices).to(vertices) | |
faces = torch.tensor(_faces).to(faces) | |
return vertices, faces | |
def vertices_np(self) -> np.ndarray: | |
return self.vertices.cpu().numpy() | |
def faces_np(self) -> np.ndarray: | |
return self.faces.cpu().numpy() | |
def simplify(self, ratio: float) -> None: | |
"""Simplify the mesh using quadric edge collapse decimation. | |
Args: | |
ratio (float): Ratio of faces to filter out. | |
""" | |
if ratio <= 0 or ratio >= 1: | |
raise ValueError("Simplify ratio must be between 0 and 1.") | |
# Convert to PyVista format for simplification | |
mesh = pv.PolyData( | |
self.vertices_np, | |
np.hstack([np.full((self.faces.shape[0], 1), 3), self.faces_np]), | |
) | |
mesh = mesh.decimate(ratio, progress_bar=True) | |
# Update vertices and faces | |
self.vertices = torch.tensor( | |
mesh.points, device=self.device, dtype=torch.float32 | |
) | |
self.faces = torch.tensor( | |
mesh.faces.reshape(-1, 4)[:, 1:], | |
device=self.device, | |
dtype=torch.int32, | |
) | |
def __call__( | |
self, | |
filter_ratio: float, | |
max_hole_size: float, | |
resolution: int, | |
num_views: int, | |
norm_mesh_ratio: float = 1.0, | |
) -> Tuple[np.ndarray, np.ndarray]: | |
"""Post-process the mesh by simplifying and filling holes. | |
This method performs a two-step process: | |
1. Simplifies mesh by reducing faces using quadric edge decimation. | |
2. Fills holes by removing invisible faces, repairing small boundaries. | |
Args: | |
filter_ratio (float): Ratio of faces to simplify out. | |
Must be in the range (0, 1). | |
max_hole_size (float): Maximum area of a hole to fill. Connected | |
components of holes larger than this size will not be repaired. | |
resolution (int): Resolution of the rasterization buffer. | |
num_views (int): Number of viewpoints to sample for rasterization. | |
norm_mesh_ratio (float, optional): A scaling factor applied to the | |
vertices of the mesh during processing. | |
Returns: | |
Tuple[np.ndarray, np.ndarray]: | |
- vertices: Simplified and repaired vertex array of (V, 3). | |
- faces: Simplified and repaired face array of (F, 3). | |
""" | |
self.simplify(ratio=filter_ratio) | |
self.fill_holes( | |
max_hole_size=max_hole_size, | |
max_hole_nbe=int(250 * np.sqrt(1 - filter_ratio)), | |
resolution=resolution, | |
num_views=num_views, | |
norm_mesh_ratio=norm_mesh_ratio, | |
) | |
return self.vertices_np, self.faces_np | |