|
from __future__ import annotations |
|
|
|
import json |
|
import warnings |
|
from collections.abc import Callable, Sequence, Set |
|
from typing import ( |
|
TYPE_CHECKING, |
|
Any, |
|
Literal, |
|
) |
|
|
|
import pandas as pd |
|
from gradio_client.documentation import document |
|
|
|
from gradio.components.base import Component |
|
from gradio.data_classes import GradioModel |
|
from gradio.events import Events |
|
|
|
if TYPE_CHECKING: |
|
from gradio.components import Timer |
|
|
|
|
|
class PlotData(GradioModel): |
|
columns: list[str] |
|
data: list[list[Any]] |
|
datatypes: dict[str, Literal["quantitative", "nominal", "temporal"]] |
|
mark: str |
|
|
|
|
|
class NativePlot(Component): |
|
""" |
|
Creates a native Gradio plot component to display data from a pandas DataFrame. Supports interactivity and updates. |
|
|
|
Demos: native_plots |
|
""" |
|
|
|
EVENTS = [Events.select, Events.double_click] |
|
|
|
def __init__( |
|
self, |
|
value: pd.DataFrame | Callable | None = None, |
|
x: str | None = None, |
|
y: str | None = None, |
|
*, |
|
color: str | None = None, |
|
title: str | None = None, |
|
x_title: str | None = None, |
|
y_title: str | None = None, |
|
color_title: str | None = None, |
|
x_bin: str | float | None = None, |
|
y_aggregate: Literal["sum", "mean", "median", "min", "max", "count"] |
|
| None = None, |
|
color_map: dict[str, str] | None = None, |
|
x_lim: list[float] | None = None, |
|
y_lim: list[float] | None = None, |
|
x_label_angle: float = 0, |
|
y_label_angle: float = 0, |
|
x_axis_labels_visible: bool = True, |
|
caption: str | None = None, |
|
sort: Literal["x", "y", "-x", "-y"] | list[str] | None = None, |
|
height: int | None = None, |
|
label: str | None = None, |
|
show_label: bool | None = None, |
|
container: bool = True, |
|
scale: int | None = None, |
|
min_width: int = 160, |
|
every: Timer | float | None = None, |
|
inputs: Component | Sequence[Component] | Set[Component] | None = None, |
|
visible: bool = True, |
|
elem_id: str | None = None, |
|
elem_classes: list[str] | str | None = None, |
|
render: bool = True, |
|
key: int | str | None = None, |
|
**kwargs, |
|
): |
|
""" |
|
Parameters: |
|
value: The pandas dataframe containing the data to display in the plot. |
|
x: Column corresponding to the x axis. Column can be numeric, datetime, or string/category. |
|
y: Column corresponding to the y axis. Column must be numeric. |
|
color: Column corresponding to series, visualized by color. Column must be string/category. |
|
title: The title to display on top of the chart. |
|
x_title: The title given to the x axis. By default, uses the value of the x parameter. |
|
y_title: The title given to the y axis. By default, uses the value of the y parameter. |
|
color_title: The title given to the color legend. By default, uses the value of color parameter. |
|
x_bin: Grouping used to cluster x values. If x column is numeric, should be number to bin the x values. If x column is datetime, should be string such as "1h", "15m", "10s", using "s", "m", "h", "d" suffixes. |
|
y_aggregate: Aggregation function used to aggregate y values, used if x_bin is provided or x is a string/category. Must be one of "sum", "mean", "median", "min", "max". |
|
color_map: Mapping of series to color names or codes. For example, {"success": "green", "fail": "#FF8888"}. |
|
height: The height of the plot in pixels. |
|
x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. If x column is datetime type, x_lim should be timestamps. |
|
y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. |
|
x_label_angle: The angle of the x-axis labels in degrees offset clockwise. |
|
y_label_angle: The angle of the y-axis labels in degrees offset clockwise. |
|
x_axis_labels_visible: Whether the x-axis labels should be visible. Can be hidden when many x-axis labels are present. |
|
caption: The (optional) caption to display below the plot. |
|
sort: The sorting order of the x values, if x column is type string/category. Can be "x", "y", "-x", "-y", or list of strings that represent the order of the categories. |
|
height: The height of the plot in pixels. |
|
label: The (optional) label to display on the top left corner of the plot. |
|
show_label: Whether the label should be displayed. |
|
container: If True, will place the component in a container - providing some extra padding around the border. |
|
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True. |
|
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. |
|
every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer. |
|
inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change. |
|
visible: Whether the plot should be visible. |
|
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. |
|
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. |
|
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. |
|
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved. |
|
""" |
|
self.x = x |
|
self.y = y |
|
self.color = color |
|
self.title = title |
|
self.x_title = x_title |
|
self.y_title = y_title |
|
self.color_title = color_title |
|
self.x_bin = x_bin |
|
self.y_aggregate = y_aggregate |
|
self.color_map = color_map |
|
self.x_lim = x_lim |
|
self.y_lim = y_lim |
|
self.x_label_angle = x_label_angle |
|
self.y_label_angle = y_label_angle |
|
self.x_axis_labels_visible = x_axis_labels_visible |
|
self.caption = caption |
|
self.sort = sort |
|
self.height = height |
|
|
|
if label is None and show_label is None: |
|
show_label = False |
|
super().__init__( |
|
value=value, |
|
label=label, |
|
show_label=show_label, |
|
container=container, |
|
scale=scale, |
|
min_width=min_width, |
|
visible=visible, |
|
elem_id=elem_id, |
|
elem_classes=elem_classes, |
|
render=render, |
|
key=key, |
|
every=every, |
|
inputs=inputs, |
|
) |
|
for key, val in kwargs.items(): |
|
if key == "color_legend_title": |
|
self.color_title = val |
|
if key in [ |
|
"stroke_dash", |
|
"overlay_point", |
|
"tooltip", |
|
"x_label_angle", |
|
"y_label_angle", |
|
"interactive", |
|
"show_actions_button", |
|
"color_legend_title", |
|
"width", |
|
]: |
|
warnings.warn( |
|
f"Argument '{key}' has been deprecated.", DeprecationWarning |
|
) |
|
|
|
def get_block_name(self) -> str: |
|
return "nativeplot" |
|
|
|
def get_mark(self) -> str: |
|
return "native" |
|
|
|
def preprocess(self, payload: PlotData | None) -> PlotData | None: |
|
""" |
|
Parameters: |
|
payload: The data to display in a line plot. |
|
Returns: |
|
The data to display in a line plot. |
|
""" |
|
return payload |
|
|
|
def postprocess(self, value: pd.DataFrame | dict | None) -> PlotData | None: |
|
""" |
|
Parameters: |
|
value: Expects a pandas DataFrame containing the data to display in the line plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`). |
|
Returns: |
|
The data to display in a line plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "line"). |
|
""" |
|
|
|
if value is None or isinstance(value, dict): |
|
return value |
|
|
|
def get_simplified_type(dtype): |
|
if pd.api.types.is_numeric_dtype(dtype): |
|
return "quantitative" |
|
elif pd.api.types.is_string_dtype( |
|
dtype |
|
) or pd.api.types.is_categorical_dtype(dtype): |
|
return "nominal" |
|
elif pd.api.types.is_datetime64_any_dtype(dtype): |
|
return "temporal" |
|
else: |
|
raise ValueError(f"Unsupported data type: {dtype}") |
|
|
|
split_json = json.loads(value.to_json(orient="split", date_unit="ms")) |
|
datatypes = { |
|
col: get_simplified_type(value[col].dtype) for col in value.columns |
|
} |
|
return PlotData( |
|
columns=split_json["columns"], |
|
data=split_json["data"], |
|
datatypes=datatypes, |
|
mark=self.get_mark(), |
|
) |
|
|
|
def example_payload(self) -> Any: |
|
return None |
|
|
|
def example_value(self) -> Any: |
|
import pandas as pd |
|
|
|
return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]}) |
|
|
|
def api_info(self) -> dict[str, Any]: |
|
return {"type": {}, "description": "any valid json"} |
|
|
|
|
|
@document() |
|
class BarPlot(NativePlot): |
|
""" |
|
Creates a bar plot component to display data from a pandas DataFrame. |
|
|
|
Demos: bar_plot_demo |
|
""" |
|
|
|
def get_block_name(self) -> str: |
|
return "nativeplot" |
|
|
|
def get_mark(self) -> str: |
|
return "bar" |
|
|
|
|
|
@document() |
|
class LinePlot(NativePlot): |
|
""" |
|
Creates a line plot component to display data from a pandas DataFrame. |
|
|
|
Demos: line_plot_demo |
|
""" |
|
|
|
def get_block_name(self) -> str: |
|
return "nativeplot" |
|
|
|
def get_mark(self) -> str: |
|
return "line" |
|
|
|
|
|
@document() |
|
class ScatterPlot(NativePlot): |
|
""" |
|
Creates a scatter plot component to display data from a pandas DataFrame. |
|
|
|
Demos: scatter_plot_demo |
|
""" |
|
|
|
def get_block_name(self) -> str: |
|
return "nativeplot" |
|
|
|
def get_mark(self) -> str: |
|
return "point" |
|
|