my_gradio / guides /05_chatbots /03_agents-and-tool-usage.md
xray918's picture
Upload folder using huggingface_hub
0ad74ed verified
# Building a UI for an LLM Agent
Tags: LLM, AGENTS, CHAT
Related spaces: https://huggingface.co/spaces/gradio/agent_chatbot, https://huggingface.co/spaces/gradio/langchain-agent
The Gradio Chatbot can natively display intermediate thoughts and tool usage. This makes it perfect for creating UIs for LLM agents. This guide will show you how.
## The metadata key
In addition to the `content` and `role` keys, the messages dictionary accepts a `metadata` key. At present, the `metadata` key accepts a dictionary with a single key called `title`.
If you specify a `title` for the message, it will be displayed in a collapsible box.
Here is an example, were we display the agent's thought to use a weather API tool to answer the user query.
```python
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages",
value=[{"role": "user", "content": "What is the weather in San Francisco?"},
{"role": "assistant", "content": "I need to use the weather API tool",
"metadata": {"title": "🧠 Thinking"}}]
)
```
![simple-metadat-chatbot](https://github.com/freddyaboulton/freddyboulton/assets/41651716/3941783f-6835-4e5e-89a6-03f850d9abde)
## A real example using transformers.agents
We'll create a Gradio application simple agent that has access to a text-to-image tool.
Tip: Make sure you read the transformers agent [documentation](https://huggingface.co/docs/transformers/en/agents) first
We'll start by importing the necessary classes from transformers and gradio.
```python
import gradio as gr
from gradio import ChatMessage
from transformers import load_tool, ReactCodeAgent, HfEngine
from utils import stream_from_transformers_agent
# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
# Initialize the agent with both tools
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
```
Then we'll build the UI. The bulk of the logic is handled by `stream_from_transformers_agent`. We won't cover it in this guide because it will soon be merged to transformers but you can see its source code [here](https://huggingface.co/spaces/gradio/agent_chatbot/blob/main/utils.py).
```python
def interact_with_agent(prompt, messages):
messages.append(ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_from_transformers_agent(agent, prompt):
messages.append(msg)
yield messages
yield messages
with gr.Blocks() as demo:
stored_message = gr.State([])
chatbot = gr.Chatbot(label="Agent",
type="messages",
avatar_images=(None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png"))
text_input = gr.Textbox(lines=1, label="Chat Message")
text_input.submit(lambda s: (s, ""), [text_input], [stored_message, text_input]).then(interact_with_agent, [stored_message, chatbot], [chatbot])
```
You can see the full demo code [here](https://huggingface.co/spaces/gradio/agent_chatbot/blob/main/app.py).
![transformers_agent_code](https://github.com/freddyaboulton/freddyboulton/assets/41651716/c8d21336-e0e6-4878-88ea-e6fcfef3552d)
## A real example using langchain agents
We'll create a UI for langchain agent that has access to a search engine.
We'll begin with imports and setting up the langchain agent. Note that you'll need an .env file with
the following environment variables set -
```
SERPAPI_API_KEY=
HF_TOKEN=
OPENAI_API_KEY=
```
```python
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent, load_tools
from langchain_openai import ChatOpenAI
from gradio import ChatMessage
import gradio as gr
from dotenv import load_dotenv
load_dotenv()
model = ChatOpenAI(temperature=0, streaming=True)
tools = load_tools(["serpapi"])
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")
# print(prompt.messages) -- to see the prompt
agent = create_openai_tools_agent(
model.with_config({"tags": ["agent_llm"]}), tools, prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools).with_config(
{"run_name": "Agent"}
)
```
Then we'll create the Gradio UI
```python
async def interact_with_langchain_agent(prompt, messages):
messages.append(ChatMessage(role="user", content=prompt))
yield messages
async for chunk in agent_executor.astream(
{"input": prompt}
):
if "steps" in chunk:
for step in chunk["steps"]:
messages.append(ChatMessage(role="assistant", content=step.action.log,
metadata={"title": f"πŸ› οΈ Used tool {step.action.tool}"}))
yield messages
if "output" in chunk:
messages.append(ChatMessage(role="assistant", content=chunk["output"]))
yield messages
with gr.Blocks() as demo:
gr.Markdown("# Chat with a LangChain Agent πŸ¦œβ›“οΈ and see its thoughts πŸ’­")
chatbot = gr.Chatbot(
type="messages",
label="Agent",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/141/parrot_1f99c.png",
),
)
input = gr.Textbox(lines=1, label="Chat Message")
input.submit(interact_with_langchain_agent, [input_2, chatbot_2], [chatbot_2])
demo.launch()
```
![langchain_agent_code](https://github.com/freddyaboulton/freddyboulton/assets/41651716/762283e5-3937-47e5-89e0-79657279ea67)
That's it! See our finished langchain demo [here](https://huggingface.co/spaces/gradio/langchain-agent).