Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from transformers import pipeline | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Create an image classification pipeline with scores | |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None) | |
# Streamlit app | |
st.title("Emotion Recognition with vit-face-expression") | |
# Slider example | |
#x = st.slider('Select a value') | |
#st.write(f"{x} squared is {x * x}") | |
# Upload images | |
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True) | |
# Display thumbnail images alongside file names and sizes in the sidebar | |
selected_images = [] | |
if uploaded_images: | |
for idx, img in enumerate(uploaded_images): | |
image = Image.open(img) | |
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox | |
# Display thumbnail image and checkbox in sidebar | |
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40) | |
selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key) | |
if selected: | |
selected_images.append(image) | |
if st.button("Predict Emotions") and selected_images: | |
emotions = [] | |
if len(selected_images) == 2: | |
# Predict emotion for each selected image using the pipeline | |
results = [pipe(image) for image in selected_images] | |
# Display images and predicted emotions side by side | |
col1, col2 = st.columns(2) | |
for i in range(2): | |
predicted_class = results[i][0]["label"] | |
predicted_emotion = predicted_class.split("_")[-1].capitalize() | |
emotions.append(predicted_emotion) | |
col = col1 if i == 0 else col2 | |
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}") | |
# Use the index to get the corresponding filename | |
col.write(f"Original File Name: {uploaded_images[i].name}") | |
# Display the keys and values of all results | |
st.write("Keys and Values of all results:") | |
col1, col2 = st.columns(2) | |
for i, result in enumerate(results): | |
col = col1 if i == 0 else col2 | |
col.write(f"Keys and Values of results[{i}]:") | |
for res in result: | |
label = res["label"] | |
score = res["score"] | |
col.write(f"{label}: {score:.4f}") | |
else: | |
# Predict emotion for each selected image using the pipeline | |
results = [pipe(image) for image in selected_images] | |
# Display images and predicted emotions | |
for i, (image, result) in enumerate(zip(selected_images, results)): | |
predicted_class = result[0]["label"] | |
predicted_emotion = predicted_class.split("_")[-1].capitalize() | |
emotions.append(predicted_emotion) | |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
st.write(f"Emotion Scores for #{i+1} Image") | |
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}") | |
# Use the index to get the corresponding filename | |
st.write(f"Original File Name: {uploaded_images[i].name if i < len(uploaded_images) else 'Unknown'}") | |
# Calculate emotion statistics | |
emotion_counts = pd.Series(emotions).value_counts() | |
# Plot pie chart | |
st.write("Emotion Distribution (Pie Chart):") | |
plt.figure(figsize=(8, 6)) | |
plt.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140) | |
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. | |
st.pyplot() | |
# Plot bar chart | |
st.write("Emotion Distribution (Bar Chart):") | |
plt.figure(figsize=(10, 6)) | |
emotion_counts.plot(kind='bar', color='skyblue') | |
plt.xlabel('Emotion') | |
plt.ylabel('Count') | |
plt.title('Emotion Distribution') | |
st.pyplot() | |