Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
from transformers import pipeline
|
|
|
|
|
4 |
|
5 |
# Create an image classification pipeline with scores
|
6 |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
|
@@ -28,6 +30,7 @@ if uploaded_images:
|
|
28 |
selected_images.append(image)
|
29 |
|
30 |
if st.button("Predict Emotions") and selected_images:
|
|
|
31 |
if len(selected_images) == 2:
|
32 |
# Predict emotion for each selected image using the pipeline
|
33 |
results = [pipe(image) for image in selected_images]
|
@@ -37,6 +40,7 @@ if st.button("Predict Emotions") and selected_images:
|
|
37 |
for i in range(2):
|
38 |
predicted_class = results[i][0]["label"]
|
39 |
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
|
|
40 |
col = col1 if i == 0 else col2
|
41 |
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
42 |
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
|
@@ -61,8 +65,28 @@ if st.button("Predict Emotions") and selected_images:
|
|
61 |
for i, (image, result) in enumerate(zip(selected_images, results)):
|
62 |
predicted_class = result[0]["label"]
|
63 |
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
|
|
64 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
65 |
st.write(f"Emotion Scores for #{i+1} Image")
|
66 |
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
|
67 |
# Use the index to get the corresponding filename
|
68 |
st.write(f"Original File Name: {uploaded_images[i].name if i < len(uploaded_images) else 'Unknown'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
from transformers import pipeline
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
|
7 |
# Create an image classification pipeline with scores
|
8 |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
|
|
|
30 |
selected_images.append(image)
|
31 |
|
32 |
if st.button("Predict Emotions") and selected_images:
|
33 |
+
emotions = []
|
34 |
if len(selected_images) == 2:
|
35 |
# Predict emotion for each selected image using the pipeline
|
36 |
results = [pipe(image) for image in selected_images]
|
|
|
40 |
for i in range(2):
|
41 |
predicted_class = results[i][0]["label"]
|
42 |
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
43 |
+
emotions.append(predicted_emotion)
|
44 |
col = col1 if i == 0 else col2
|
45 |
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
46 |
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
|
|
|
65 |
for i, (image, result) in enumerate(zip(selected_images, results)):
|
66 |
predicted_class = result[0]["label"]
|
67 |
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
68 |
+
emotions.append(predicted_emotion)
|
69 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
70 |
st.write(f"Emotion Scores for #{i+1} Image")
|
71 |
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
|
72 |
# Use the index to get the corresponding filename
|
73 |
st.write(f"Original File Name: {uploaded_images[i].name if i < len(uploaded_images) else 'Unknown'}")
|
74 |
+
|
75 |
+
# Calculate emotion statistics
|
76 |
+
emotion_counts = pd.Series(emotions).value_counts()
|
77 |
+
|
78 |
+
# Plot pie chart
|
79 |
+
st.write("Emotion Distribution (Pie Chart):")
|
80 |
+
plt.figure(figsize=(8, 6))
|
81 |
+
plt.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140)
|
82 |
+
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
|
83 |
+
st.pyplot()
|
84 |
+
|
85 |
+
# Plot bar chart
|
86 |
+
st.write("Emotion Distribution (Bar Chart):")
|
87 |
+
plt.figure(figsize=(10, 6))
|
88 |
+
emotion_counts.plot(kind='bar', color='skyblue')
|
89 |
+
plt.xlabel('Emotion')
|
90 |
+
plt.ylabel('Count')
|
91 |
+
plt.title('Emotion Distribution')
|
92 |
+
st.pyplot()
|