Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from decord import VideoReader, cpu | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer | |
# Device Configuration | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image_file, input_size=448, max_num=12): | |
image = Image.open(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values).to(device) | |
return pixel_values | |
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
max_frame = len(vr) - 1 | |
fps = float(vr.get_avg_fps()) | |
pixel_values_list, num_patches_list = [], [] | |
transform = build_transform(input_size=input_size) | |
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') | |
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(tile) for tile in img] | |
pixel_values = torch.stack(pixel_values) | |
num_patches_list.append(pixel_values.shape[0]) | |
pixel_values_list.append(pixel_values) | |
pixel_values = torch.cat(pixel_values_list) | |
return pixel_values, num_patches_list | |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / num_segments | |
frame_indices = np.array([ | |
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) | |
for idx in range(num_segments) | |
]) | |
return frame_indices | |
# Load Model | |
path = 'OpenGVLab/InternVL2_5-1B' | |
model = AutoModel.from_pretrained( | |
path, | |
low_cpu_mem_usage=True, | |
use_flash_attn=False, | |
trust_remote_code=True | |
).eval().to(device) | |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) | |