File size: 3,255 Bytes
617bd81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f586a0d
617bd81
 
 
 
 
 
 
 
 
 
 
 
f586a0d
617bd81
f586a0d
 
 
617bd81
 
 
 
 
 
 
 
f586a0d
617bd81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f586a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

AVAILABLE_MODELS = {
    "distilgpt2": "distilgpt2",
    "bloomz-560m": "bigscience/bloomz-560m",
    "gpt2-medium": "gpt2-medium",
    "opt-350m": "facebook/opt-350m",
    "pythia-160m": "EleutherAI/pythia-160m"
}

class TextGenerator:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        
    def load_model(self, model_name: str) -> str:
        try:
            self.model = AutoModelForCausalLM.from_pretrained(AVAILABLE_MODELS[model_name])
            self.tokenizer = AutoTokenizer.from_pretrained(AVAILABLE_MODELS[model_name])
            return f"Successfully loaded {model_name}"
        except Exception as e:
            return f"Error loading model: {str(e)}"
    
    def get_next_token_predictions(self, text: str, top_k: int = 10):
        if not self.model or not self.tokenizer:
            return [], []
        
        inputs = self.tokenizer(text, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
            logits = outputs.logits[0, -1, :]
            probs = torch.nn.functional.softmax(logits, dim=-1)
            
        top_k_probs, top_k_indices = torch.topk(probs, top_k)
        top_k_tokens = [self.tokenizer.decode([idx.item()]) for idx in top_k_indices]
        
        return top_k_tokens, top_k_probs.tolist()

generator = TextGenerator()

def format_predictions(tokens, probs):
    if not tokens or not probs:
        return "No predictions available"
    
    formatted = "Predicted next tokens:\n\n"
    for token, prob in zip(tokens, probs):
        formatted += f"'{token}' : {prob:.4f}\n"
    return formatted

def update_output(model_name, text, custom_token, selected_token):
    output = text
    
    if not generator.model or generator.model.name_or_path != AVAILABLE_MODELS[model_name]:
        load_message = generator.load_model(model_name)
        if "Error" in load_message:
            return text, "", "", gr.update(choices=[]), load_message
    
    if custom_token:
        output += custom_token
    elif selected_token:
        output += selected_token.strip("'")
    
    tokens, probs = generator.get_next_token_predictions(output)
    predictions = format_predictions(tokens, probs)
    token_choices = [f"'{token}'" for token in tokens]
    
    return output, "", "", gr.update(choices=token_choices), predictions

demo = gr.Interface(
    fn=update_output,
    inputs=[
        gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="distilgpt2", label="Select Model"),
        gr.Textbox(lines=5, label="Generated Text", placeholder="Start typing or select a token..."),
        gr.Textbox(label="Custom Token", placeholder="Type your own token..."),
        gr.Dropdown(choices=[], label="Select from predicted tokens")
    ],
    outputs=[
        gr.Textbox(lines=5, label="Generated Text"),
        gr.Textbox(label="Custom Token"),
        gr.Textbox(label="Selected Token"),
        gr.Dropdown(label="Predicted Tokens"),
        gr.Textbox(lines=12, label="Predictions")
    ],
    title="Interactive Text Generation",
    description="Generate text by selecting predicted tokens or writing your own."
)