File size: 22,505 Bytes
9d9cd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import numpy as np
import os
import re
from io import BytesIO
import datetime
import time
import openai, tenacity
import argparse
import configparser
import json
import fitz
import PyPDF2
import gradio
import sys
from pathlib import Path
utils_dir = Path(__file__).parent / 'utils'
sys.path.append(str(utils_dir))
from openai_utils import *
import base64
from pdf2image import convert_from_bytes
import requests
PRIVATE_API_KEY = os.getenv('PRIVATE_API_KEY')
PRIVATE_API_BASE = os.getenv('PRIVATE_API_BASE')
def insert_sentence(text, sentence, interval):
lines = text.split('\n')
new_lines = []
for line in lines:
words = line.split()
separator = ' '
new_words = []
count = 0
for word in words:
new_words.append(word)
count += 1
if count % interval == 0:
new_words.append(sentence)
new_lines.append(separator.join(new_words))
return '\n'.join(new_lines)
def search_paper(query):
SEMANTIC_SCHOLAR_API_URL = "https://api.semanticscholar.org/graph/v1/paper/"
url = f"{SEMANTIC_SCHOLAR_API_URL}search?query={query}&limit=3&fields=url,title,abstract&fieldsOfStudy=Computer Science"
response = requests.get(url)
while response.status_code != 200:
time.sleep(1)
# print(response)
response = requests.get(url)
return response.json()
def split_text_into_chunks(text, chunk_size=300):
words = text.split()
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
return chunks
def download_pdf(paper):
pdf_url = paper["openAccessPdf"]["url"]
try:
response = requests.get(pdf_url)
response.raise_for_status()
file_object = BytesIO(response.content)
extract_text = extract_chapter(file_object)
chunks = split_text_into_chunks(extract_text)
return chunks
except:
return []
def recommendation(s2_id, limit=500):
SEMANTIC_SCHOLAR_API_URL = "https://api.semanticscholar.org/recommendations/v1/papers/forpaper/"
url = f"{SEMANTIC_SCHOLAR_API_URL}{s2_id}?limit={limit}&fields=url,title,abstract,publicationDate,isOpenAccess,openAccessPdf"
# print(url)
response = requests.get(url)
while response.status_code != 200:
time.sleep(1)
# print(response)
response = requests.get(url)
return response.json()
def extract_chapter(file_object):
pdf_reader = PyPDF2.PdfReader(file_object)
num_pages = len(pdf_reader.pages)
extraction_started = False
extracted_text = ""
for page_number in range(num_pages):
page = pdf_reader.pages[page_number]
page_text = page.extract_text()
extraction_started = True
page_number_start = page_number
if extraction_started:
extracted_text += page_text
if page_number_start + 1 < page_number:
break
return extracted_text
class Reviewer:
def __init__(self, api, api_base, paper_pdf, aspect, model_name, enable_rag):
self.api = api
self.api_base = api_base
self.aspect = aspect
self.paper_pdf = paper_pdf
self.model_name = model_name
self.enable_rag = enable_rag
# self.max_token_num = 50000
# self.encoding = tiktoken.get_encoding("gpt2")
def review_by_chatgpt(self, paper_list):
text, title, abstract = self.extract_from_paper(self.paper_pdf)
content = f"Paper to review: \nTitle: {title}\n" + text
if self.enable_rag:
papers = self.retrieve_papers(title, abstract)
if papers != None:
retrieval_content = ""
retrieved_papers = ""
cnt = 1
for paper in papers:
retrieval_content += f"Relevant Paper {str(cnt)}:\n"
retrieval_content += f"Title: {paper['title']}\n{paper['content']}\n\n"
retrieved_papers += f"{str(cnt)}. {paper['title']}\n"
cnt += 1
text = retrieval_content + content
chat_review_text = self.chat_review(text=text)
else:
text = content
chat_review_text = self.chat_review(text=text)
retrieved_papers = ""
else:
text = content
chat_review_text = self.chat_review(text=text)
retrieved_papers = ""
return chat_review_text, retrieved_papers
def query_gen(self, abstract):
os.environ["OPENAI_BASE_URL"] = PRIVATE_API_BASE
os.environ["OPENAI_API_KEY"] = PRIVATE_API_KEY
client = AsyncOpenAI()
messages=[
{"role": "system", "content": f"Generate a TLDR in 5 words of the following text. Do not use any proposed model names or dataset names from the text. Output only the 5 words without punctuation."} ,
{"role": "user", "content": abstract},
]
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=[messages],
engine_name="gpt-4o-mini", # gpt-3.5-turbo
max_tokens=1000, # 32
requests_per_minute = 20,
# response_format={"type":"json_object"},
)
)
return responses[0]
def rerank(self, paper_list, title, abstract):
os.environ["OPENAI_BASE_URL"] = PRIVATE_API_BASE
os.environ["OPENAI_API_KEY"] = PRIVATE_API_KEY
client = AsyncOpenAI()
rec_content = ""
rec_paper_cnt = 1
for rec_paper in paper_list:
rec_content += f"Paper {rec_paper_cnt}: {rec_paper['title']}\n{rec_paper['abstract']}\n\n"
rec_paper_cnt += 1
rec_content += f"Reference Paper: {title}\n"
rec_content += f"Abstract: {abstract}\n"
messages=[
{"role": "system", "content": f"Given the abstracts of {rec_paper_cnt-1} papers and the abstract of a reference paper, rank the papers in order of relevance to the reference paper. Output the top 5 as a list of integers in JSON format: {{'ranking': [1, 10, 4, 2, 8]}}."} ,
{"role": "user", "content": rec_content},
]
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=[messages],
engine_name="gpt-4o-mini", # gpt-3.5-turbo
max_tokens=1000, # 32
requests_per_minute = 20,
response_format={"type":"json_object"},
)
)
response_data = json.loads(responses[0])
rec_papers = []
for rec_num in response_data["ranking"][:5]:
num = int(rec_num)
rec_papers.append(paper_list[num-1])
return rec_papers
def extract_related_content(self, papers, aspect):
os.environ["OPENAI_BASE_URL"] = self.api_base
os.environ["OPENAI_API_KEY"] = self.api
client = AsyncOpenAI()
messages = []
chunk_index_map = []
paper_data_list = []
paper_chunk_list = []
for paper_idx, paper in enumerate(papers):
paper_chunks = download_pdf(paper)
paper_chunk_list.append(paper_chunks)
SYSTEM_INPUT = f"Read the following section from a scientific paper. If the section is related to the paper's {aspect}, output 'yes'; otherwise, output 'no'."
for chunk_idx, paper_chunk in enumerate(paper_chunks):
message = [
{"role": "system", "content": SYSTEM_INPUT},
{"role": "user", "content": paper_chunk},
]
messages.append(message)
chunk_index_map.append((paper_idx, chunk_idx)) # 标记每个 chunk 归属哪个 paper
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=messages,
engine_name="gpt-4o-mini",
max_tokens=1000,
requests_per_minute=100,
)
)
paper_data_list = [{"title": paper["title"], "content": ""} for paper in papers]
for (paper_idx, chunk_idx), response in zip(chunk_index_map, responses):
if response.strip().lower().startswith("yes"):
paper_data_list[paper_idx]["content"] += paper_chunk_list[paper_idx][chunk_idx] + "\n"
for idx, paper_data in enumerate(paper_data_list):
if not paper_data["content"].strip():
paper_data["content"] = papers[idx]["abstract"]
if aspect == "Methodology":
SYSTEM_INPUT = """Concatenate all the content from the methodology sections of a paper.
Remove sentences that are irrelevant to the proposed methodology or models, and keep details about key components and innovations.
Organize the result in JSON format as follows:
{
"revised_text": str, not dict, not a summary
}
"""
elif aspect == "Result Analysis":
SYSTEM_INPUT = """Concatenate all the content from the result analysis sections of a paper.
Remove sentences that are irrelevant to the result analysis of the experiments, and keep details about the metrics, case study and how the paper presents the results.
Organize the result in JSON format as follows:
{
"revised_text": str, not dict, not a summary
}
"""
elif aspect == "Experimental Design":
SYSTEM_INPUT = """Concatenate all the content from the experimental design sections of a paper.
Remove sentences that are irrelevant to the experiment setup, and keep details about the datasets, baselines, and main experimental, ablation studies.
Organize the result in JSON format as follows:
{
"revised_text": str, not dict, not a summary
}
"""
elif aspect == "Literature Review":
SYSTEM_INPUT = """Concatenate all the content from the literature review sections of a paper.
Remove sentences that are irrelevant to the literature review, and keep details about the related works.
Organize the result in JSON format as follows:
{
"revised_text": str, not dict, not a summary
}
"""
messages = []
for paper_data in paper_data_list:
message=[
{"role": "system", "content": SYSTEM_INPUT} ,
{"role": "user", "content": paper_data["content"]},
]
messages.append(message)
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=messages,
engine_name="gpt-4o-mini", # gpt-3.5-turbo
max_tokens=1000, # 32
requests_per_minute = 20,
response_format={"type":"json_object"},
)
)
results = []
for paper_data, response in zip(paper_data_list, responses):
response = json.loads(response)
results.append({"title": paper_data["title"], "content": response["revised_text"]})
return results
def chat_review(self, text):
os.environ["OPENAI_BASE_URL"] = self.api_base
os.environ["OPENAI_API_KEY"] = self.api
client = AsyncOpenAI()
if self.enable_rag:
messages=[
{"role": "system", "content": f"Read the following content from several papers to gain knowledge in the relevant field. Using this knowledge, review a new scientific paper in this field. Based on existing research, identify the limitations of the 'Paper to Review'. Generate the major limitations related to its {self.aspect} in this paper. Do not include any limitation explicitly mentioned in the paper itself and return only the list of limitations. Return only the limitations in the following JSON format: {{\"limitations\": <a list of limitations>"} ,
{"role": "user", "content": text},
]
else:
messages=[
{"role": "system", "content": f"Read the following scientific paper and generate major limitations in this paper about its {self.aspect}. Do not include any limitation explicitly mentioned in the paper itself and return only the limitations. Return only the limitations in the following JSON format: {{\"limitations\": <a list of limitations>"} ,
{"role": "user", "content": text},
]
try:
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=[messages],
engine_name=self.model_name, # gpt-3.5-turbo
max_tokens=1000, # 32
requests_per_minute = 20,
# response_format={"type":"json_object"},
)
)
try:
limitations = json.loads(responses[0])["limitations"]
result = ""
limit_cnt = 1
for limitation in limitations:
result += f"{str(limit_cnt)}. {limitation}\n"
limit_cnt += 1
except:
SYSTEM_INPUT = f"Below is an output from an LLM about several limitations of a scientific paper. Please extract the list of limitations and DO NOT make any modification to the original limitations. Return the limitations in the following JSON format: {{\"limitations\": <a list of limitations>}}. If there is no valid response inthe output, return {{\"limitations\": {{}}}}"
messages=[
{"role": "system", "content": SYSTEM_INPUT},
{"role": "user", "content": responses[0]},
]
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=[messages],
engine_name="gpt-4o-mini", # gpt-3.5-turbo
max_tokens=1000, # 32
requests_per_minute = 20,
response_format={"type":"json_object"},
)
)
limitations = json.loads(responses[0])["limitations"]
result = ""
limit_cnt = 1
for limitation in limitations:
result += f"{str(limit_cnt)}. {limitation}\n"
limit_cnt += 1
# for choice in response.choices:
# result += choice.message.content
# result = insert_sentence(result, '**Generated by ChatGPT, no copying allowed!**', 50)
except Exception as e:
result = "Error: "+ str(e)
# usage = 'xxxxx'
print("********"*10)
print(result)
print("********"*10)
return result
def retrieve_papers(self, title, abstract):
query = title
search_results = search_paper(query)
if search_results != [] and search_results["data"][0]["title"].lower() == title.lower():
search_result = search_results[0]
retrieval = recommendation(search_result["paperId"])
recommended_paper_list = []
for recommended_paper in retrieval["recommendedPapers"]:
if recommended_paper["abstract"] is None:
continue
if recommended_paper["isOpenAccess"] and recommended_paper["openAccessPdf"]!= None:
recommended_paper_list.append(recommended_paper)
if len(recommended_paper_list) >= 20:
break
else:
query = self.query_gen(abstract)
search_results = search_paper(query)
recommended_paper_list = []
if search_results["data"] == []:
return None
for search_result in search_results["data"]:
retrieval = recommendation(search_result["paperId"])
recommended_papers = []
for recommended_paper in retrieval["recommendedPapers"]:
if recommended_paper["abstract"] is None:
continue
if recommended_paper["isOpenAccess"] and recommended_paper["openAccessPdf"]!= None:
recommended_papers.append(recommended_paper)
if len(recommended_papers) >= 5:
break
recommended_paper_list.extend(recommended_papers)
if recommended_paper_list == []:
return None
final_papers = self.rerank(recommended_paper_list, title, abstract)
retrieved_papers = self.extract_related_content(final_papers, self.aspect)
return retrieved_papers
def extract_from_paper(self, pdf_path):
os.environ["OPENAI_BASE_URL"] = PRIVATE_API_BASE
os.environ["OPENAI_API_KEY"] = PRIVATE_API_KEY
client = AsyncOpenAI()
# with open(pdf_path, 'rb') as f: # TODO
# pdf_bytes = f.read()
# file_object = BytesIO(pdf_bytes)
file_object = BytesIO(pdf_path) # TODO
pdf_reader = PyPDF2.PdfReader(file_object)
doc = fitz.open(stream=pdf_path, filetype="pdf") # TODO
page = doc.load_page(0)
pix = page.get_pixmap()
image_bytes = pix.tobytes("png")
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
USER_INPUT = [{"type": "text", "text": "The first page of the paper: "}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}]
messages=[
{"role": "system", "content": "Given the first-page image of a scientific paper in PDF format, extract and return the title and abstract in the following JSON format: {\"title\": \"<extracted title>\", \"abstract\": \"<extracted abstract>\"}."} ,
{"role": "user", "content": USER_INPUT},
]
responses = asyncio.run(
generate_from_openai_chat_completion(
client,
messages=[messages],
engine_name="gpt-4o-mini", # gpt-3.5-turbo
max_tokens=1000, # 32
requests_per_minute = 20,
response_format={"type":"json_object"},
)
)
response = json.loads(responses[0])
title = response["title"]
abstract = response["abstract"]
num_pages = len(pdf_reader.pages)
extraction_started = False
extracted_text = ""
for page_number in range(num_pages):
page = pdf_reader.pages[page_number]
page_text = page.extract_text()
extraction_started = True
page_number_start = page_number
if extraction_started:
extracted_text += page_text
if page_number_start + 1 < page_number:
break
return extracted_text, title, abstract
def main(api,api_base, paper_pdf, aspect, model_name, enable_rag):
start_time = time.time()
# print("key: ", PRIVATE_API_KEY, "\nbase: ", PRIVATE_API_BASE)
comments = ''
output2 = ''
retrieved_content = ''
if not api or not paper_pdf:
comments = "It looks like there's a missing API key or PDF input. Make sure you've provided the necessary information or uploaded the required file."
output2 = "It looks like there's a missing API key or PDF input. Make sure you've provided the necessary information or uploaded the required file."
else:
try:
reviewer1 = Reviewer(api,api_base, paper_pdf, aspect, model_name, enable_rag)
comments, retrieved_content = reviewer1.review_by_chatgpt(paper_list=paper_pdf)
time_used = time.time() - start_time
output2 ="Processing Time:"+ str(round(time_used, 2)) +"seconds"
except Exception as e:
comments = "Error: "+ str(e)
output2 = "Error: "+ str(e)
return retrieved_content, comments, output2
########################################################################################################
title = "LimitGen"
description = '''<div align='left'>
<strong>We present a demo for our paper: Can LLMs Identify Critical Limitations within Scientific Research? A Systematic Evaluation on AI Research Papers. Upload the PDF of the paper you want to review, and the demo will automatically generate its identified limitations.
</div>
'''
inp = [gradio.Textbox(label="Input your API-key",
value="",
type='password'),
gradio.Textbox(label="Input the base URL (ending with /v1). Skip this step if using the original OpenAI API.",
value="https://api.openai.com/v1"),
gradio.File(label="Upload the PDF file of your paper (Make sure the PDF is fully uploaded before clicking Submit)",type="binary"),
gradio.Radio(choices=["Methodology", "Experimental Design", "Result Analysis", "Literature Review"],
value="Methodology",
label="Select the aspect"),
gradio.Textbox(label="Input the model name",
value="gpt-4o-mini"),
gradio.Checkbox(label="Enable RAG", value=False)
]
chat_reviewer_gui = gradio.Interface(fn=main,
inputs=inp,
outputs = [gradio.Textbox(lines=6, label="Retrieved Literature"), gradio.Textbox(lines=15, label="Output"), gradio.Textbox(lines=2, label="Resource Statistics")],
title=title,
description=description)
# Start server
chat_reviewer_gui .launch(quiet=True, show_api=False) |