File size: 114,583 Bytes
68c6b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Uncomment the following line to install the required packages\n",
    "\n",
    "# %pip install langchain openai langchain_openai langchain_core langgraph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Not running in Google Colab\n"
     ]
    }
   ],
   "source": [
    "import sys\n",
    "import os\n",
    "\n",
    "if 'google.colab' in sys.modules:\n",
    "    print(\"Running in Google Colab\")\n",
    "    from google.colab import userdata\n",
    "\n",
    "    # get secret openai_api_key and set it to OS env OPENAI_API_KEY\n",
    "    try:\n",
    "      openai_api_key = userdata.get('openai_api_key')\n",
    "      os.environ['OPENAI_API_KEY'] = openai_api_key\n",
    "    except:\n",
    "      print(\"No openai_api_key found in Google Colab\")\n",
    "\n",
    "    # get secret openai_base_url\n",
    "    try:\n",
    "      openai_base_url = userdata.get('openai_base_url')\n",
    "      os.environ['OPENAI_API_BASE'] = openai_base_url\n",
    "    except:\n",
    "      print(\"No openai_base_url found in Google Colab\")\n",
    "else:\n",
    "    print(\"Not running in Google Colab\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Annotated, Sequence, Dict, Any\n",
    "\n",
    "from typing_extensions import TypedDict\n",
    "\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "from langgraph.graph import StateGraph, END\n",
    "from langgraph.graph.message import add_messages\n",
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langchain_core.messages import HumanMessage, SystemMessage, BaseMessage\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain_core.pydantic_v1 import BaseModel\n",
    "\n",
    "import operator\n",
    "import random\n",
    "\n",
    "# Can converge correctly\n",
    "\n",
    "# MODEL_NAME = \"anthropic/claude-3.5-sonnet:beta\"\n",
    "# MODEL_NAME = \"openai/gpt-4o\"\n",
    "# MODEL_NAME = \"openai/gpt-4-turbo\"\n",
    "# MODEL_NAME = \"llama3-70b-8192\"\n",
    "# MODEL_NAME = \"meta-llama/llama-3-70b-instruct\"\n",
    "# MODEL_NAME = \"deepseek/deepseek-chat\"\n",
    "# MODEL_NAME = \"qwen/qwen-2-72b-instruct\"\n",
    "\n",
    "# Failed to converge correctly\n",
    "\n",
    "# MODEL_NAME = \"llama3-8b-8192\"\n",
    "# MODEL_NAME = \"mistralai/mixtral-8x22b-instruct\"\n",
    "# MODEL_NAME = \"anthropic/claude-3-haiku:beta\"\n",
    "MODEL_NAME = \"google/gemma-2-9b-it\"\n",
    "# MODEL_NAME = \"meta-llama/llama-3-8b-instruct\"\n",
    "# MODEL_NAME = \"microsoft/phi-3-medium-128k-instruct\"\n",
    "# MODEL_NAME = \"mixtral-8x7b-32768\"\n",
    "# MODEL_NAME = \"cohere/command-r\"\n",
    "\n",
    "llm = ChatOpenAI(model_name=MODEL_NAME, temperature=0.5)\n",
    "\n",
    "# EXECUTOR_MODEL = \"microsoft/phi-3-medium-128k-instruct\"\n",
    "# EXECUTOR_MODEL = \"deepseek/deepseek-chat\"\n",
    "# EXECUTOR_MODEL = \"gemma-7b-it\"\n",
    "# EXECUTOR_MODEL = \"llama3-8b-8192\"\n",
    "# EXECUTOR_MODEL = \"llama3-70b-8192\"\n",
    "# EXECUTOR_MODEL = \"mixtral-8x7b-32768\"\n",
    "# EXECUTOR_MODEL = \"anthropic/claude-3-haiku:beta\"\n",
    "# EXECUTOR_MODEL = \"meta-llama/llama-3-8b-instruct\"\n",
    "EXECUTOR_MODEL = \"google/gemma-2-9b-it\"\n",
    "# EXECUTOR_MODEL = \"anthropic/claude-3.5-sonnet:beta\"\n",
    "\n",
    "executor_llm = ChatOpenAI(model_name=EXECUTOR_MODEL, temperature=0.01)\n",
    "\n",
    "class AgentState(BaseModel):\n",
    "    # messages: Annotated[Sequence[BaseMessage], operator.add] = []\n",
    "    acceptance_criteria: str = \"Exactly text match.\"\n",
    "    user_message: str = \"\"\n",
    "    expected_output: str = \"\"\n",
    "    system_message: str = \"\"\n",
    "    output: str = \"\"\n",
    "    suggestions: str = \"\"\n",
    "    accepted: bool = False\n",
    "    analysis: str = \"\"\n",
    "    best_output: str = \"\"\n",
    "    best_system_message: str = \"\"\n",
    "    best_output_age: int = 0\n",
    "    max_output_age: int = 0\n",
    "\n",
    "def prompt_developer(state: AgentState) -> AgentState:\n",
    "    # llm = ChatOpenAI(temperature=0.1)\n",
    "    \n",
    "    if not state.system_message:\n",
    "        # Initial system message creation\n",
    "        initial_prompt = ChatPromptTemplate.from_messages([\n",
    "            (\"system\", \"\"\"# Expert Prompt Engineer\n",
    "\n",
    "You are an expert prompt engineer tasked with creating system messages for AI\n",
    "assistants.\n",
    "\n",
    "## Instructions\n",
    "\n",
    "1. Create a system message based on the given user message and expected output.\n",
    "2. Ensure the system message can handle similar user messages.\n",
    "3. Output only the system message, without any additional content.\n",
    "4. Expected Output text should not appear in System Message as an example. But\n",
    "   it's OK to use some similar text as an example instead.\n",
    "5. Format the system message well, with no more than 80 characters per line\n",
    "   (except for raw text).\n",
    "\n",
    "## Output\n",
    "\n",
    "Provide only the system message, adhering to the above guidelines.\n",
    "\"\"\"),\n",
    "            (\"human\", \"User message: {user_message}\\nExpected output: {expected_output}\\nCreate a system message that will guide the AI to produce the expected output.\")\n",
    "        ])\n",
    "        response = llm(initial_prompt.format_messages(\n",
    "            user_message=state.user_message, \n",
    "            expected_output=state.expected_output\n",
    "        ))\n",
    "        state.system_message = response.content\n",
    "    else:\n",
    "        # Update system message based on analysis\n",
    "        update_prompt = ChatPromptTemplate.from_messages([\n",
    "            (\"system\", \"\"\"# Expert Prompt Engineer\n",
    "\n",
    "You are an expert prompt engineer tasked with updating system messages for AI\n",
    "assistants. You Update System Message according to Suggestions, to improve\n",
    "Output and match Expected Output more closely.\n",
    "\n",
    "## Instructions\n",
    "\n",
    "1. Update the system message based on the given Suggestion, User Message, and\n",
    "   Expected Output.\n",
    "2. Ensure the updated system message can handle similar user messages.\n",
    "3. Modify only the content mentioned in the Suggestion. Do not change the\n",
    "   parts that are not related to the Suggestion.\n",
    "4. Output only the updated system message, without any additional content.\n",
    "5. Expected Output text should not appear in System Message as an example. But\n",
    "   it's OK to use some similar text as an example instead.\n",
    "   * Remove the Expected Output text or text highly similar to Expected Output\n",
    "     from System Message, if it's present.\n",
    "6. Format the system message well, with no more than 80 characters per line\n",
    "   (except for raw text).\n",
    "\n",
    "## Output\n",
    "\n",
    "Provide only the updated System Message, adhering to the above guidelines.\n",
    "\"\"\"),\n",
    "            (\"human\", \"\"\"Current system message: {system_message}\n",
    "# User Message\n",
    "\n",
    "{user_message}\n",
    "\n",
    "# Expected Output\n",
    "\n",
    "{expected_output}\n",
    "\n",
    "# Suggestions\n",
    "\n",
    "{suggestions}\n",
    "\"\"\")\n",
    "        ])\n",
    "        response = llm(update_prompt.format_messages(**state.dict()))\n",
    "        state.system_message = response.content\n",
    "    print(state.system_message)\n",
    "\n",
    "    # state.messages.append(SystemMessage(content=state.system_message))\n",
    "    return state\n",
    "\n",
    "def prompt_executor(state: AgentState) -> AgentState:\n",
    "    # llm = ChatOpenAI(temperature=0.1)\n",
    "    messages = [\n",
    "        SystemMessage(content=state.system_message),\n",
    "        HumanMessage(content=state.user_message)\n",
    "        ]\n",
    "    response = executor_llm(messages)\n",
    "    state.output = response.content\n",
    "    # state.messages.append(HumanMessage(content=state.user_message))\n",
    "    # state.messages.append(response)\n",
    "\n",
    "    print(response.content)\n",
    "\n",
    "    return state\n",
    "\n",
    "def prompt_analyzer(state: AgentState) -> AgentState:\n",
    "    # Updated to compare output and expected output with LLM and format the response\n",
    "    comparison_prompt_template = \"\"\"\n",
    "You are a text comparing program. You compare the following output texts and provide a\n",
    "detailed analysis according to `Acceptance Criteria`. Then you decide whether `Actual Output`\n",
    "is acceptable.\n",
    "\n",
    "Provide your analysis in the following format:\n",
    "\n",
    "```\n",
    "- Acceptable Differences: [List acceptable differences succinctly]\n",
    "- Unacceptable Differences: [List unacceptable differences succinctly]\n",
    "- Accept: [Yes/No]\n",
    "```\n",
    "\n",
    "* Compare Expected Output and Actual Output with the guidance of Accept Criteria.\n",
    "* Only set 'Accept' to 'Yes', if Accept Criteria are all met. Otherwise, set 'Accept' to 'No'.\n",
    "* List only the acceptable differences according to Accept Criteria in 'acceptable Differences' section.\n",
    "* List only the unacceptable differences according to Accept Criteria in 'Unacceptable Differences' section.\n",
    "\n",
    "# Acceptance Criteria\n",
    "\n",
    "```\n",
    "{acceptance_criteria}\n",
    "```\n",
    "\"\"\"\n",
    "    human_prompt_template = \"\"\"\n",
    "# Expected Output\n",
    "\n",
    "```\n",
    "{expected_output}\n",
    "```\n",
    "\n",
    "# Actual Output\n",
    "\n",
    "```\n",
    "{output}\n",
    "```\n",
    "\"\"\"\n",
    "\n",
    "    comparison_prompt = ChatPromptTemplate.from_messages([\n",
    "            (\"system\", comparison_prompt_template),\n",
    "            (\"human\", human_prompt_template)\n",
    "        ])\n",
    "    \n",
    "    # Format the prompt with the current state\n",
    "    formatted_prompt = comparison_prompt.format_messages(**state.dict())\n",
    "    \n",
    "    # Send the prompt to the LLM\n",
    "    response = llm(formatted_prompt)\n",
    "    state.analysis = response.content\n",
    "\n",
    "    print(response.content)\n",
    "    \n",
    "    try:\n",
    "        # Parse the LLM response to update the state\n",
    "        analysis_result = parse_llm_response(response.content)\n",
    "        \n",
    "        # Update state.matched based on the LLM's analysis\n",
    "        state.accepted = analysis_result['Accept'].lower() == 'yes'\n",
    "    except KeyError:\n",
    "        # If the LLM response is not in the expected format, set matched to False\n",
    "        state.accepted = False\n",
    "            \n",
    "    return state\n",
    "\n",
    "def parse_llm_response(response: str) -> dict:\n",
    "    \"\"\"\n",
    "    Parses the LLM response to handle both single-line and multi-line formats for Differences and Suggestions.\n",
    "    \"\"\"\n",
    "    lines = response.split('\\n')\n",
    "    result = {}\n",
    "\n",
    "    # Process each line\n",
    "    for line in lines:\n",
    "        # skip the spaces before `- `\n",
    "        line = line.strip()\n",
    "        if line.startswith('- Accept:'):\n",
    "            result['Accept'] = line.split(': ')[1].strip().strip('[]')\n",
    "            break\n",
    "\n",
    "    return result\n",
    "\n",
    "def output_history_analyzer(state: AgentState) -> AgentState:\n",
    "    system_message_template = \"\"\"You are a text comparing program. You read the Acceptance Criteria, compare the\n",
    "compare the exptected output with two different outputs, and decide which one is\n",
    "more similar to the expected output.\n",
    "\n",
    "You output the following analysis according to the Acceptance Criteria:\n",
    "\n",
    "* Your analysis in a Markdown list.\n",
    "* The ID of the output that is more similar to the Expected Output as Preferred\n",
    "  Output ID, with the following format:\n",
    "    \n",
    "```\n",
    "# Analysis\n",
    "\n",
    "...\n",
    "\n",
    "# Preferred Output ID: [ID]\n",
    "```\n",
    "\n",
    "If both outputs are equally similar to the expected output, output the following:\n",
    "\n",
    "```\n",
    "# Analysis\n",
    "\n",
    "...\n",
    "\n",
    "# Draw\n",
    "```\n",
    "\"\"\"\n",
    "    human_message_templates = [\n",
    "        \"\"\"\n",
    "# Output ID: A\n",
    "\n",
    "```\n",
    "{best_output}\n",
    "```\n",
    "\n",
    "# Output ID: B\n",
    "\n",
    "```\n",
    "{output}\n",
    "```\n",
    "\n",
    "# Acceptance Criteria\n",
    "\n",
    "{acceptance_criteria}\n",
    "\n",
    "# Expected Output\n",
    "\n",
    "```\n",
    "{expected_output}\n",
    "```\n",
    "\"\"\",\n",
    "        \"\"\"\n",
    "# Output ID: B\n",
    "\n",
    "```\n",
    "{output}\n",
    "```\n",
    "\n",
    "# Output ID: A\n",
    "\n",
    "```\n",
    "{best_output}\n",
    "```\n",
    "\n",
    "# Acceptance Criteria\n",
    "\n",
    "{acceptance_criteria}\n",
    "             \n",
    "# Expected Output\n",
    "\n",
    "```\n",
    "{expected_output}\n",
    "```\n",
    "\"\"\"\n",
    "    ]\n",
    "\n",
    "    # pick a random human message template\n",
    "    output_comparison_prompt_template = ChatPromptTemplate.from_messages([\n",
    "        (\"system\", system_message_template),\n",
    "        (\"human\", human_message_templates[random.randint(0, 1)])\n",
    "        ])\n",
    "\n",
    "    if (state.best_output is None or state.best_output == \"\") and \\\n",
    "        (state.best_system_message is None or state.best_system_message == \"\"):\n",
    "        state.best_output = state.output\n",
    "        state.best_system_message = state.system_message\n",
    "        state.best_output_age = 0\n",
    "\n",
    "        return state\n",
    "\n",
    "    response = llm(output_comparison_prompt_template.format_messages(**state.dict()))\n",
    "\n",
    "    print(response.content)\n",
    "\n",
    "    result = parse_output_history_analyzer(response.content, 'A')\n",
    "\n",
    "    if result == 'B':\n",
    "        state.best_output = state.output\n",
    "        state.best_system_message = state.system_message\n",
    "        state.best_output_age = 0\n",
    "    else:\n",
    "        state.best_output_age += 1\n",
    "        state.output = state.best_output\n",
    "        state.system_message = state.best_system_message\n",
    "\n",
    "        print(\"Best Output Age: \", state.best_output_age)\n",
    "\n",
    "    return state\n",
    "\n",
    "def parse_output_history_analyzer(response: str, default_result = None) -> dict:\n",
    "    \"\"\"\n",
    "    Parses the LLM response to handle both single-line and multi-line formats for Differences and Suggestions.\n",
    "    \"\"\"\n",
    "    lines = response.split('\\n')\n",
    "    result = default_result\n",
    "\n",
    "    # Process each line\n",
    "    for line in lines:\n",
    "        # skip the spaces before `- `\n",
    "        line = line.strip()\n",
    "        if line.startswith('# Preferred Output ID:'):\n",
    "            result = line.split(': ')[1].strip().strip('[]')\n",
    "            break\n",
    "        elif line.startswith('# Draw'):            \n",
    "            result = default_result\n",
    "            break\n",
    "\n",
    "    print(\"Result: \", result)\n",
    "\n",
    "    return result\n",
    "\n",
    "def prompt_suggester(state: AgentState) -> AgentState:\n",
    "    # Updated to compare output and expected output with LLM and format the response\n",
    "    suggester_prompt_template = \"\"\"\n",
    "Read the following inputs and outputs of an LLM prompt, and also analysis about them.\n",
    "Then suggest how to improve System Prompt.\n",
    "\n",
    "* The goal is to improve the System Prompt to match the Expected Output better.\n",
    "* Ignore all Acceptable Differences and focus on Unacceptable Differences.\n",
    "* Suggest formal changes first, then semantic changes.\n",
    "* Provide your suggestions in a Markdown list, nothing else. Output only the\n",
    "  suggestions related with Unacceptable Differences.\n",
    "  * Use `... should ...` to clearly state the desired output.\n",
    "  * Figue out the contexts of the System Message that conflict with the suggestions,\n",
    "    and suggest modification or deletion.\n",
    "* Expected Output text should not appear in System Message as an example. But\n",
    "  it's OK to use some similar text as an example instead.\n",
    "  * Ask to remove the Expected Output text or text highly similar to Expected Output\n",
    "    from System Message, if it's present.\n",
    "* Provide format examples or detected format name, if System Message does not.\n",
    "  * Specify the detected format name (e.g. XML, JSON, etc.) of Expected Output, if\n",
    "    System Message does not mention it.\n",
    "\"\"\"\n",
    "    human_prompt_template = \"\"\"\n",
    "System Prompt:\n",
    "```\n",
    "{system_message}\n",
    "```\n",
    "User Message:\n",
    "```\n",
    "{user_message}\n",
    "```\n",
    "Expected Output: \n",
    "```\n",
    "{expected_output}\n",
    "```\n",
    "Actual Output: \n",
    "```\n",
    "{output}\n",
    "```\n",
    "\n",
    "Acceptance Criteria:\n",
    "```\n",
    "{acceptance_criteria}\n",
    "```\n",
    "\n",
    "Analysis:\n",
    "```\n",
    "{analysis}\n",
    "```\n",
    "\"\"\"\n",
    "\n",
    "    suggester_prompt = ChatPromptTemplate.from_messages([\n",
    "            (\"system\", suggester_prompt_template),\n",
    "            (\"human\", human_prompt_template)\n",
    "        ])\n",
    "    \n",
    "    # Format the prompt with the current state\n",
    "    formatted_prompt = suggester_prompt.format_messages(**state.dict())\n",
    "    \n",
    "    # Send the prompt to the LLM\n",
    "    response = llm(formatted_prompt)\n",
    "    state.suggestions = response.content\n",
    "\n",
    "    print(response.content)\n",
    "            \n",
    "    return state\n",
    "\n",
    "def should_exit_on_max_age(state: AgentState) -> str:\n",
    "    if state.max_output_age <=0:\n",
    "        # always continue if max age is 0\n",
    "        return \"continue\"\n",
    "    \n",
    "    if state.best_output_age >= state.max_output_age:\n",
    "        return END\n",
    "    \n",
    "    if state.best_output_age > 0:\n",
    "        # skip prompt_analyzer and prompt_suggester, goto prompt_developer\n",
    "        return \"rerun\" \n",
    "    \n",
    "    return \"continue\"\n",
    "\n",
    "def should_exit_on_acceptable_output(state: AgentState) -> str:\n",
    "    if state.accepted:\n",
    "        return END\n",
    "    else:\n",
    "        return \"continue\"\n",
    "\n",
    "\n",
    "workflow = StateGraph(AgentState)\n",
    "\n",
    "workflow.add_node(\"prompt_developer\", prompt_developer)\n",
    "workflow.add_node(\"prompt_executor\", prompt_executor)\n",
    "workflow.add_node(\"output_history_analyzer\", output_history_analyzer)\n",
    "workflow.add_node(\"prompt_analyzer\", prompt_analyzer)\n",
    "workflow.add_node(\"prompt_suggester\", prompt_suggester)\n",
    "\n",
    "workflow.set_entry_point(\"prompt_developer\")\n",
    "\n",
    "workflow.add_edge(\"prompt_developer\", \"prompt_executor\")\n",
    "workflow.add_edge(\"prompt_executor\", \"output_history_analyzer\")\n",
    "\n",
    "workflow.add_conditional_edges(\n",
    "    \"output_history_analyzer\",\n",
    "    should_exit_on_max_age,\n",
    "    {\n",
    "        \"continue\": \"prompt_analyzer\",\n",
    "        \"rerun\": \"prompt_suggester\",\n",
    "        END: END\n",
    "    }\n",
    ")\n",
    "\n",
    "workflow.add_conditional_edges(\n",
    "    \"prompt_analyzer\",\n",
    "    should_exit_on_acceptable_output,\n",
    "    {\n",
    "        \"continue\": \"prompt_suggester\",\n",
    "        END: END\n",
    "    }\n",
    ")\n",
    "\n",
    "workflow.add_edge(\"prompt_suggester\", \"prompt_developer\")\n",
    "\n",
    "memory = MemorySaver()\n",
    "graph = workflow.compile(checkpointer=memory)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAH8AaoDASIAAhEBAxEB/8QAHQABAAIDAQEBAQAAAAAAAAAAAAYHBAUIAwIJAf/EAFkQAAEDBAADAggICgUJBgQHAAEAAgMEBQYRBxIhEzEIFBUWIkFR0TJUVVZhkZSzFyM2cXaSk5XS4UJTdYGiCSQlMzc4UmKhQ3KxtMHDNFd0lmNmgoWk09T/xAAbAQEAAwEBAQEAAAAAAAAAAAAAAQIDBAUGB//EADoRAQABAgIIBAQDBwUBAQAAAAABAgMRUQQSExQhMVKRQaHR8BVTYXGSorEFIjJigcHhM0JjcrIjNP/aAAwDAQACEQMRAD8A/VNERAREQEREBERAREQEREBERAREQEREBYVZe7dbpRFV19LSykcwZNM1jiPbon6Fmqqsnt9LXcTLr4zTQ1HLa6Ll7WMO1+Mqu7aiuum1bru18qYx4feI/u3sWttXFGOCwPOqyfLFB9qZ7086rJ8sUH2pnvVeeb9r+TaP9g33J5v2v5No/wBg33Lyviuj9FXeHpfDv5vJYfnVZPlig+1M96edVk+WKD7Uz3qvPN+1/JtH+wb7k837X8m0f7BvuT4ro/RV3g+HfzeSw/OqyfLFB9qZ7086rJ8sUH2pnvVeeb9r+TaP9g33J5v2v5No/wBg33J8V0foq7wfDv5vJYfnVZPlig+1M96edVk+WKD7Uz3qvPN+1/JtH+wb7k837X8m0f7BvuT4ro/RV3g+HfzeSw/OqyfLFB9qZ71602Q2qsnbDT3Ojnmf8GOOdjnH8wBVb+b9r+TaP9g33LGNqoqLKMUkp6Ongk8pgc0UTWnXYTdNgLo0fT7GkXItU0zEz9slLmg6lE1a3JcKIi7nkiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgKsr7/tLu/wDZlD95VKzVWV9/2l3f+zKH7yqXPpf/AOS99o/9Uu7Qv9eP6vVFHMj4k4jh9cyiv2U2WyVj4xMynuNwhp5HMJIDg17gSNtcN92wfYtX+HPhvoH8IOLaPTflqm/jXxUUVTxiH0U1Uxzl7cQeJ1Bw9ls1LNbrlerpeJ3wUNttMLZJ5ixhkkI53MaA1oJJLh9G1Dcj43Xm2cTMLslHh95q7be7TPcJohBCyqY4OiDWkSTt5ezDyZARv0mcu9OAcTLpY+LGPU8ON2ii4mx0tTzvlx+/08FVa5eU9nNHNzjldvY6OB1vo4dFoocT4kY7LwtyWttgzPILPaay23ingrYYZS6fsXMkD5C1j+XsQ1x3sk7G11UUUREa0cePOfpOHuWFVVUzw5cOSeZRxroMOyI2+647kVNbG1MNI/ITQt8nMklLQzcnPzcpc9reYMLQTolKjjTR+ft3xC347f7zdbS+mFa+hgh7CFk7A9khe+Vo1o9R8L0XaaQCVSnE3g1mOVT5p2uFx5HfKu6MrrTkVXdIWspaJj4pGUkMbnc0b9Mcw6a1ri8uL1dWB4tdbVxU4kXutojTW+8vtz6KR0jHGQRUoZICGuJbyu6ddb9Wx1Sqi1TTjznDP7es9iKrk1YeGPr/AIYPAHiveOKuNT1t3x2ttMsdVVRtqnsibTStZUyxtYzlme/nY1gD+YAcwPKSNK01S/Curr+DdmudjzOlo7Bj9Jca6opMmrLpTx0tUJ6p80bOVzw9j9Su2HDXodCdqYfhz4b/APzBxX99U38ayuUTNczRHD6L0VRFMRVPH6pwsCq/KTFP7UH3Ey0tj4q4Tk1zit1nzCwXa4S7MdJQ3OCaV+gSdMa4k6AJPTuBW6qvykxT+1B9xMu39nRNOl0RMZ/pKt+YmzVhktdERfVvlRERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFWV9/wBpd3/syh+8qlZqi9+4e0F/vD7nJV3CkqnwsgeaSo7NrmsLy3Y13gvd9arctxes3LUzhrRH6xP9nTo9yLVyK6kalpYZnc0kTJHa1tzQSvjyfS/Fof2YW6/BTQ/LF7+2/wAk/BTQ/LF7+2/yXh/CJ+bHaXrb/aylqYoI4ARHGyMHv5WgbXotl+Cmh+WL39t/kn4KaH5Yvf23+SfB/wDljtJ8QtZS1qKtMqpa20eEzguEU97ugsV3s9dW1THVG5DJFrk07XQde5W7+Cmh+WL39t/knwf/AJY7Sn4haylqpImTN5ZGNe32OGwvLyfS/Fof2YW6/BTQ/LF7+2/yT8FND8sXv7b/ACT4RPzY7Sjf7WUtPHSQRPDmQxscO4tYAVjVX5SYp/ag+4mUh/BTQ/LF7+2/yXtQcMbdQ3SirjX3OqlpJO2iZU1XOwO5XN2Rrr0cV16L+zo0e9F2bkThj4Tkzu6bbrommInimCIi9N4giIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOd8+/wB97hX+jl1/8Wrohc759/vvcK/0cuv/AItXRCAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIixrlcqSzW6qr6+qhoaClifPUVVTII4oY2guc97iQGtABJJ6ABBQGff773Cv8ARy6/+LV0QuRM241cPKvww+Gt6gzzGZrPSWC5Q1FwjvFO6nhkcW8rHyB/K1x9QJ2V1LjmW2PMKapqLDebfe6emndSzy26qjqGRTNALo3FhIa8BzSWnqNj2oNsiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLW33IKDHKMVNfP2TXO5I42tL5JX6J5WMGy52gToDuBPcCpiJqnCITEY8IbJFXs/EG+1biaGyU1JD05XXGqPaEfSyNpA/XP9yx/PLLvi9l+uZbbLOqO/o6o0W9P+1ZSKtfPLLvi9l+uZPPLLvi9l+uZNlHVHdO6XsllIq188su+L2X65k88su+L2X65k2UdUdzdL2SylqMvxijzXE71jtx5/J93oZ6Co7N3K7spY3Mfo+o6ceqhnnll3xey/XMnnll3xey/XMmyjqjubpeyfiznnC2+YHxRueB1NK+pvlJX+IRxQtJNQ5zgIiwd5Dw5rm+shwX7R+DfwcpuBPB3H8TiDHVsEXb3CZn/bVb/Sldv1gH0W/8rWqrMk4NwZVxvsXFSuoLccktEIiiijkeKaZzQ7s5ZGcvM57Ob0SHD4Leh5QrW88su+L2X65k2UdUdzdL2SykVa+eWXfF7L9cyeeWXfF7L9cybKOqO5ul7JZSKtfPLLvi9l+uZPPLLvi9l+uZNlHVHc3S9kspFWvnll3xey/XMnnll3xey/XMmyjqjubpeyWUirqHPMkpiDU2e31sexsUtW+N+vXoPYQfzFw/OpXjmW0GTMkbTmSCrhAM1FUt5J4t70S3Z2Do6c0lp0dE6KrNuqIxjjH0ljXZuW+NUN0iIsmIiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg8aurhoKSapqJBFBCx0kkju5rQNkn8wCqumqp7/Um91zXNqKhv4iB52KWA6Ijb7CdNc8+t3r01oEu4rPczh9eWj4MkTYpPZ2b3ta/f0cpKjq1n9y1jHjMx2w/XHyetoNETjXIiprOrdU5X4QFjx6W+3u2Wh+MVlZJT2i5S0YklbVU7GucY3A7Aeeo0fVvRINb2/IMlyaXDcbflt3bTwZzdbC67UtUY6ivooKeZzRI9ug53Tk59b2zmGnAFcuD0Zu4Thg6tRUJFjlXl/E/J8Rny3JLLZcVtVCaEUV3ljqJ3ziVz6maYkvl5TGGgPJb0Ox1UT4Y3y+8a77iFPfMkvdDT1WFvrakWaufReM1Eda6BtRuMggub6Xo6B2N7A0mCNrxwwdTouVeHV1yCgxbgzl1Rld9ulyyG8+SLnBXVrpKaeF0VVy/ifgNc0wMIe0BxO+YnaxKeuvdk4GjiTDl2QzZHSX6eKOkq7pJNSVUflV9OKYwOJaQWdAQOYHWiAABOCNtwxw+v6erqmlvVBXXGuoKasgnraEsFVTxvDnwF7eZgeB8ElvUA+og+tZiovhfh9LH4RPFm5Cvuxnpa2he2B1znMD+2omk88XPyPALiGBwIYAA3QA1ecjixjnBpcQNho7z9ChrRVNUYy1eSZVa8RpaWpu1V4pDVVcFDC7s3v5p5nhkbNNB1tzgNnoPWQFtVx/NSV+bcL8B4jXbJ7xXXS85Za55baKwi3U7TcGtbAyn+COz0BzfCLmnZ6kLaU54ocV7jmV3sFbJRVluvdZa7e7znlpKeh7CTlY2WhbSvZLsAOdzuJcH9C0a0wYxe+jqxFzTkuQ5VZsjv3DJ93rmXzLK+krLRXxVMjpKOkmBNwELydtbB4vMWAa5e2j1rosGsHETihl+etsdXUUnm/cnWi3NjymW3Ck5ImOZLJTtppBUc5cX80riHD0QBrZYLTe8MHR9JlVrrsluGPwVXPd7fBDU1NP2bx2ccpeI3cxHKdmN/QEka662FtVzdPkWQYXlPFm91Laeoym2YHbKuUQAuhdVRx1jnloIBLOcE60OnsX1Tm7cPbtwyqqbMb3kMmWQTxXKC41zqiKY+JOqBUQMPSHke0dGaHK/WvWhF3OPeODo9FypiFVesY4ccGcyiy3ILleL/cLbb7hR3S5yVUFbFU7bJqJ5Ia9g9MPbo+geYnZK8MTPFfina58wslb4rc33SoZB2+TyxUlKyGpdH4vJbxSuYRyM0S55eebm5hsAMEbbww4usljVkE/PFV0Uvi9ypiXU829D1EsfrvY7QDh+YjRDSKe4P2quyTOc+vNzyK91Udpyqqo6C2+UJW0kUYgi2DGDp43JsNdtrS0FoBJJupWpqmiYqhpGFynjHBO8avsWS2KjuUTDEJ2bfC4guieDp8ZI6EtcHNOvWFs1B+FD3eTb3F/2UV2mEfs05rHu/xvf/ftThdF2mKa5iOT5q5TqVzTkIiLJmIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgwL/Z4sgsdwtkznMirIHwOe34TOZpHMPpG9j6Qq0tVTPLTuhrGCK40ruwq4gd8koAJ/ucCHNPra5p9atpRvKcObfJW1tHOLfdo2cgn5OZkzOumSt6czQSSCCC0k6OnODtaZiqnUq4Ze/q7dGv7GrCrlKgs84JUvEXinar7eWsnsVHZaigMENZPTVInfNE9rmuiLTy8jJAfT/pDofVKbfwtxW00uN01FZ4aSnxyV89rige9jad72PY92gfSJbI/fNvZcT39VIp6fILa4sq8dqJyNDtrdLHNG72kBxa8f3tWP5QuHzbvf2UfxKN3ueEY/1h68XLM/vYxxR3N+D+I8Ra6Gsv9p8bq4oTTCeGpmp3vhJ2YnmJ7S9m9nkdtvU9Oq2luwSw2i90t2obbFSV1JbhaIHQlzWRUgeHiJsYPIACB11vprelneULh82739lH8SjObcXrBw2jpH5W6XHRV8/iwubo4HT8uufkDngu1zN3reuYe0Ju93JbaWcccYZdHwrxe32XHbTT2vs7fj1WK62Q+MSnxecCQB+y7buksnRxI9Lu6DUD4XeDVYMVpKGuyC3U9yySkuVXcI6iOrnkpmPfUyyRPbC4iPtGsewc3JsFvQnQKxqrwz+E9G/lkyWNx/8AwgJB9bSVadjys5LZaC7Wuy3etttdAyppqmKl22WN7Q5rh6XcQQU3e7krrWZmJxhqb/wts9wyV+V0FJDSZe2ERw3CR8/YuLQQwzQxysbMG8x1zdddxC86K28SWVtO6syHFZaQSNM0cFhqWSOZv0g1xrXBpI3okHXsPcpP5QuHzbvf2UfxJ5QuHzbvf2UfxJu93JOva560d0If4O3D198N2GPCOs8fZdAIqyoZC2qY8PbK2FsgjDuYAkhvXqDsErMvPAzB79k8mQ1lia66yvjlmkiqZoo53s1yOliY8MkcNDRe0noFK/KFw+bd7+yj+JPKFw+bd7+yj+JN3u5GvYzjyfypxy2Vl+ob1PRxyXWhhlp6aqcPSijlLDIB+fs2fV07zuLZVwOwjNb7JebvY2z3GZjYp5YamaAVLG/BbM2N7WygDoA8O6dO5SryhcPm3e/so/iXxPdq2mgkmfjd85I2l7uWj5joDZ0Adn8wTd7uSZuWZ5zDCrMAx+vyuHJZ7ZG+9xUjqAVXM4F9O7ZMb2g8r29ToOB1s61taHH+BmGYbVT11hskdHcHU0lNBLLUTTNpmP72RNe5wiaTrYjDR9CyMH4u2PiVT1M2Lx1l7bSv7KoZSxtdJA/ZHLIzm5mHoejgO5SbyhcPm3e/so/iTd7uSNpZnjjCr+DHg449w3seL1NfbYKvLbVRNgfWsq554I5S3Uj4WSHlZzdfSaxpOz7VJZeBuDy5Y7JPITY7s+qbXPfFUzRwyVDSC2Z0LXiNzwQDzFpOxvalflC4fNu9/ZR/EnlC4fNu9/ZR/Em73ckRVYiMMYeVgxW14xJdX2yl8WddK19xrD2j39rUPa1rn+kTrYY0aGh07u9Z1dWx2+lfPJzEN0Axg257idNY0etziQAPWSAviHy5WuDKXGbhzEj06t0UEY+kkvLvqaT9ClOM4RLSVUdyvM0VXXx9YaeEf5vTH1ubsbc/R1znXTo1rdu5kWdWcbnLLHj/AI/r/hS5pNu3T+7OMthgtimx/Gqanq9ePSufU1XK7mAlkcXuaD6w0u5QfY0Lfoiiuqa6pqnxfPzM1TjIiIqIEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEUB4t8ccP4KWmKsya5dnU1B5KK10re2ra1+9BkMI6uJJA30aCRshBPlxP4ZmQ434S1pl4Z8Psck4jcQLdM2eG62wtbS2Q8ze1ElU5zWfjGNLDHzFpdyk6cxqnRwvin4UH43NZqrhXw2l6txe3y6u9yj9lXMP8AUscO+NvXRLXDYDlfuCcPsc4ZY7T2LFrPS2S1QD0aelZrZ1ouce97jrq5xJPrKD8gfBH8GW4cbeNhsV8oKmhsuPy9tkEc7HRSR8jy3xZwIBa972lhB0QGvPe3S/Zunp4qSniggjZDBE0MjjjaGtY0DQAA7gB6lrbJiVjxqquVTaLLb7VU3Oc1VdNRUscL6uYkkySloBe8kk8ztnqVtkBERAREQEREFOcVvBos2eXtuWY7carAuIcA/EZLZQGvl/5KmLo2dh0AQ7qQAN66KI2bwksi4R3alxvjvaIrGZniGizi1tc+z1x9Xa9N08h9Yd07z6LQF0isG+WK3ZNaaq13egprnbaphjnpKuJssUrT6nNcCCEGRRVtPcqSGqpJ4qqlmYJIp4Xh7JGkbDmuHQgj1hey5fr+A+eeD1WTXngdcfKmOF5mq+HV8qC6nds7caKdx3C8/wDC46J6ku0GqxeDXhK4txgqZ7MGVOMZpRdK/Fb2zsK2BwHpFrTrtG/8zfVokN3pBbaIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDnXIeO+Y8V8gueJ8FrO1wt9S+humcXyJzLdQSsOpI4IyOaolafVrlB1vbTtS3hN4NWPcNrtJktzqqrNM+qR/nWU3w9rUk60WwtO2wM6kBrOuuhJAUT8CP8AIbPf05vH3jV0SgIiICIiAiIgIiICIiAiIgKteMPg+4fxrpqeS9UktFfKMh1BkFrk8XuFE8HbXRzDroHryu23fXW+qspEHMbOKXEbwZeWl4qwyZxgMbgyLPbRTnxmjaTpvj9M3Z11A7Rm/Vvmc5dLUVZDcaOCqppBLTzxtljkHc5rhsH+8FU14aX+61xF/s3/ANxis3AfyExz+zab7pqDfIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg528CP8AIbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIixay50dv141VwU2+o7aRrP8AxKmImeEDKRarzqsnyxQfame9POqyfLFB9qZ71fZ19MpwltUWq86rJ8sUH2pnvTzqsnyxQfame9NnX0yYS2qLVedVk+WKD7Uz3p51WT5YoPtTPemzr6ZMJfnL4b/hWcUccyLOOEl7smORY9Xt1SVsNLUColonu5onh5m5S8BvK48muZr9AK3fAP8ACuzrj3kNbjd6sVnpbBYbOCbhbYZmP7UPijgjfzyuG3MFQ49OvKNa5Tvz/wAo1wgouLGAW3KsafT3TKbDIInUtC8S1FVSSOALWsbtzyx5DgPUDIVYngT8NLLwK4IW2lrq+hp8kvGrldRJUMD45HAckJG+nZs0CP8AiLz602dfTJhLpJFqvOqyfLFB9qZ7086rJ8sUH2pnvTZ19MmEtqi1XnVZPlig+1M96edVk+WKD7Uz3ps6+mTCW1RarzqsnyxQfame9POqyfLFB9qZ702dfTJhLaovClraeuZz01RFUM/4onhw/wCi91SYmOEoERFAIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOdvAj/IbPf05vH3jV0SudvAj/ACGz39Obx941dEoCIiAiIgIiiXE+vkpcVfSwvMUtynjoA9pILWvd+MII6g9mH6I7jpXop16opzWppmqYpjxaS+ZRV5TJJDbaqWgszSWGqgPLPVkHRMb/AOhH7HD0nd7S1oBfpYcWs8Di8W2mfI4lzpZYw+RxPeS52yT+crZRRMgiZHGxscbAGta0aAA7gAq7yPjZSWHK7xj9Ni+R3+utFNBWVbrTSxSMZFLz8pHNK0k/i3eiBzH+iHaOlV6rlROEe+eb6Oi3bsU4Jx5AtnydSfsG+5PIFs+TqT9g33Kvq3whMeFTjUFot93yWbI7dJc7a2007HdrGwsDmnnezkcOffp6A5SCQdA+V58Iuw2SsuLZbPfp7daZGQ3e7U1G2Sktkrmtc6OZwfslge3n7Nrw3fUrPaV5y016M1jeQLZ8nUn7BvuTyBbPk6k/YN9yr7KvCAs+L3TIaJtiv95834Iqu5VNrpY5IYKeSPtGy8zpG8w5Q7Ybt3ok8pA2vWycebLeK/xWS03u19vbJbxQS3ClbGy40sYaXvh9MkEB7DyyBjtOB1pNpXnJr0Y4Yp55AtnydSfsG+5PIFs+TqT9g33KvMU8IOz5PUY0JrFf7FR5JG11puF1pY2U9U90faNiDmSPLXloJAcAHaPKT0358E+LV54lVeTQXTGq+1Mt91rKSGrkZC2EMikDGwu5ZnuMwBJcQOTodO7gm0r6pIrpmYiFj+QLZ8nUn7BvuTyBbPk6k/YN9y+7xd6OwWmtudxqGUlBRwvqKiokOmxxtBc5x+gAEqBWPjnb7zdaK3y45kdnnuUUslqN0omQtuXIwyFkR7Q8rywFwbLyHQPsKbSvqlaZpicJTryBbPk6k/YN9yeQLZ8nUn7BvuUIxnjvjeXVdjpbZHWy1NypJ62ohfGxjrVHE4sk8c2/8WRIHR6HMS5p10BKx7Nx/sd4uNpjNov1DabxO2mtl+raIR0NbI4ExhjuYvAeB6Bexod00eoTaV5yrr0Zp/5AtnydSfsG+5PIFs+TqT9g33KE2LjZbspv/iNmsGQXS2eNvojkFPRNNv7VhLX6eXh7mtcC0vawt2D1X3FxtscvD2jzEUlwFsqrkLWyIxx9sJTWGk2Rz65e0G982+XrrfRNpX1Sa9Epn5AtnydSfsG+5PIFs+TqT9g33KssI4z3K+cQc9s12x+tt9nsFaYY7q9sLYIIm07JHGd3bF23bLmlrdchbzcp2BsMT4+2PLLxZ6IWm+WmnvbXus9yulGIaa5BrS/8UQ8uBLAXtEjWFwGxtNpX1SRXRKbPxa19qJoaOOiqW75amj/EStJ9YezR/wCvqUpxjLKuhrYLXeZjVRzu7OkuJaGuL9f6ubWgHH+i8AB3wSA7l56t4bcYqHim50tosV7gtzTOx1yrYI46ftYpezdECJC5zieoLWlugQXBwLRNbnQMulvnpXktEjdB7Tosd3tcD6iCAQfaAtab0zOrcnGP0+3vixuWqL9PDutdFpcLvUmRYnabjNyioqKdjpg3uEmtP19HMCt0q1UzRVNM84fOzGE4CIiqgREQEREBERAREQEREBERAREQEREBERAREQEREBERBzt4Ef5DZ7+nN4+8auiVzt4Ef5DZ7+nN4+8auiUBERAREQFC+K1OTYaGt0SyguME79DemkmJx/MBJs/QCpovCuoYLnRVFHVRNnpaiN0UsTxtr2OGnNP0EEhaW6ooriqeS9FWpVFWSuFz7U5Fk2P+EFxJOM4k/Kqma0WcFor4aVsDgKrkLzIRtp27fLsjl7jtXzWU82JVLLfc5CYHHlpLg/fJO3emse49Gyga2D8P4Tf6TWfMFooaa5VVwhoqeKvqmMjqKpkTWyzNZvka94G3BvM7QJ6cx13rKuibc8eXh9X0kTF6IqplSfCvg1fOH2UcPRUxx1dJZ8Zr6KurYZGhjauephm5GtJ5i3pJo61po3rYC1mQYFnlrsfEnCLNjkF0tuY19ZVU+QSV8UUVHHWNAmE0Tj2hdGS8t5A4OHL3aXRSLPE2VOGEKM/BVfaCPjFSU9G6ogvOPUdttMr5owauSKhlhIPpegeZzRt+h13vXVeeT4HfYGcPK59Dy0tgxG60Vyk7aP8AETSUtM1jdc23bMUg23YHL1PUbvdfE8EdTDJDNG2WGRpY+N7Q5rmkaIIPeCmKdlHv74uZeGVny/iTgvBW3VGMix41j8VtvEl5nr4pTWdjTahZFEwlzecuaXF/LoAjr65zgs9x4R3fMqfKKKltWLVt9rLvBk9Tc6eKm1UPa5sLmPcHteHEt7tHQ0eqt232+ltNBT0NDTQ0dFTRthgpqeMRxxMaNNa1o6NAAAAHQaXrJGyVvK9jXt9jhsIim1q4TjxVZn+RYXxowi/YRZc6x6out7opaWmjpbnDM8yFhIPIxxc4DWyAO4FRrhdghsFbT1lXwPs2PXe10T3i62+eiL6mpDeUNpw3TmiQF/WQs5dgHeyRerKOCJwcyCNjh3FrACF6onZ4zrTzc6YTwjzKx3a91tzpKeVnEWlqPOOOi7FjrJUua/sTG7YM0YY/s3aLjzjnGw5y/nBzhAcXqcbtd74OY/BXWcNZLmFPLSuEz4W/iqiNgHbdo5zWE8wboknZ1pdGImKIs0xhKleDttznhbaLXgdRh7bjaLdUyQxZLDc4WQvpXSue2R0J/G9oA7RaGkEjfN1UPqOHuf0fDyjwCnxMVVPQZOy4i9C4wNinpPKnjfMyMu5w8NdpzXADTTouOgemkQ2UYYYqRqcCyR2YcT7I+zOnxrOYyW36CriHiPNQCne2SFzg9x5mAgsBGndSNLAseJZ5lFTwzs1/xqHHrdhlRHWVV0ZcIp210sNM+CNtOxh52sd2hce0DdAa6lX6iYp2UZ++avuAeKXTCeFlss95pfErjDU1skkPaMfoSVk0jDtpI6te09/r69VPp52U0Ek0juWONpe5x9QA2Svpzgxpc4hrQNknuC87NZ/PuZjWt5seY4OnqD8Gs11EUf8AxM3rnf8ABI9AbJcWa26NecZ5Rzn35IrrpsUYz4Jdw1oZLfgllimY6OZ9OJnscNFjpCXlp+kF2v7lJURXrq165rnxfMzOM4iIiogREQEREBERAREQEREBERAREQEREBERAREQEREBERBzt4Ef5DZ7+nN4+8auiVzt4Ef5DZ7+nN4+8auiUBERAREQEREHjV0cFwppaaqgjqaeVpbJDMwPY8ewg9CFFJuFNjJPir7hbmkk9nSV0rYxv2MJLR+YAKYotKbldHCmVqaqqf4ZwQj8E9v+V739tPuT8E9v+V739tPuU3RX29zNptrnVKEfgnt/yve/tp9yfgnt/wAr3v7afcpuibe5mba51ShH4J7f8r3v7afcn4J7f8r3v7afcpuibe5mba51S5/8JCxS8MuB2YZRY71do7tbKPt6d01VzsDudo6tI69CVNMU4cUt3xez11ReLyaiqo4Z5C2sIHM5gcdDXtK0Pho/7rfEb+zf/cYrMwH8hMc/s2m+6am3uZm2udUtN+Ce3/K97+2n3J+Ce3/K97+2n3Kbom3uZm2udUoR+Ce3/K97+2n3J+Ce3/K97+2n3Kbom3uZm2udUoR+Ce3/ACve/tp9yfgnt/yve/tp9ym6Jt7mZtrnVKI0vC2wRPa+phqboWnYbcaqSeP9m48h+pS1rQxoa0BrQNADuC/qKlVyuv8AinFnVVNXGqcRERZqiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDnbwI/wAhs9/Tm8feNXRK528CP8hs9/Tm8feNXRKAiIgIiICIiAiIgIiICIiAiIgpXw0f91viN/Zv/uMVmYD+QmOf2bTfdNVZ+Gj/ALrfEb+zf/cYrMwH8hMc/s2m+6ag3yIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOdvAj/IbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIiICIiAiIgIiIOZvDI4wYFWcAOI+OwZtjk+QCkfSm0x3andViZsrQ6Psg/n5wQQW62NFWvwf4lYjl+LWK32LKrJeq+G2RGWlt1xhqJWBjI2vLmscSOUyMB2Ohe3feF+d3+Uw4FDBOJ9LndrphHZso341yD0Y69o9P83aN0/wClwkKtP/JYcF57Zbb/AMT65j4vKEbrPbWnoJIQ9r55PpHaRxtB9Rjeg/QBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREHO3gR/kNnv6c3j7xq6JXO3gR/kNnv6c3j7xq6JQEREBR7I82osemFI2OW43JzQ4UVIAXtad6c8khrGnR0XEb0dbI0vvNMifjdlM1OxktfUSNpqSOQ+i6V3rP0NAc8jv0w666UHoqMUcTgZJKieR3PNUTHckz9AF7j7egHTQAAAAAAGsRTRTr1RjlHvwd2jaPtuNXJnyZzlE55orXaqRp7mS1Ukzh+fTGj6t/396+PPLLvi9l+uZeaKNvlTHZ6m6Wcnp55Zd8Xsv1zJ55Zd8Xsv1zLXm80Dby20msg8qOpzVCj7QdqYQ4NMnL38vMQN+1ZibeemOxutnJ6eeWXfF7L9cyeeWXfF7L9cy81hm80Dby20msg8qOpzVCj7QdqYQ4NMnL38vMQN+1NvPTHY3Wzk2Hnll3xey/XMnnll3xey/XMvNaqxZVa8lqLvBbarxmW01jrfWt7N7eynDGPLPSA5vRkYdt2Ovf0KbeemOxutnJufPLLvi9l+uZPPLLvi9l+uZaduTW1+TyY8Kgm8R0ba91P2b+kDnlgdza5fhNI1vfTu0si73qgsFH43cqyChpedkXa1EgY3ne4MY3Z9bnOAA9ZICbeemOyN1s5Itxpw2t48YDWYjktNbG2+okjmbUUb3tngkY7YfG5zXAHW2nYPRzh61vcGF64d4fZ8ZstDZoLXaqVlLTtc6UuLWjXM49NuJ2SfWSStwibeemOyd0s5PTzyy74vZfrmTzyy74vZfrmXmibeemOxulnJ6eeWXfF7L9cyeeWXfF7L9cy80Tbz0x2N0s5PTzyy74vZfrmTzyy74vZfrmXmtVc8qtdmvdmtFZVdjcbw+WOhh7N7u2dHGZHjmAIbpgJ9IjfcNlNvPTHY3WzHOG588su+L2X65k88su+L2X65l5om3npjsbpZyennll3xey/XMvaHPcjpnA1Vnt9ZHsb8Uq3Rv16yGvZo/mLh+dYqJt86Y9/ZE6JZnwTXHMroMmik8WdJDUw67ejqG8k0O965m+w6OnDbTo6J0VuVU9ZDOySKuoHiG6Uu3QSb0HdxMT/AGxv0A4fmI05rSLHx69w5HZKO5QNLI6iMOMbiC6N3c5h162uBB+kKZiKqdenl+nv3nPk6RY2M8OUtiiIsnIIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDnbwI/wAhs9/Tm8feNXRK528CP8hs9/Tm8feNXRKAiIgr7iS9zslxaJ3+q/zqYb/rAxjW/wB/K9//AFWEpDxHs89daaWvo4nz1dsnFS2GP4UsZaWSsHtPI4uA9bmNH0qNU9RFV08U8EjZoZWh7JGHbXNI2CD6wQtLvGiiY8Iw85n+73dCqibeGTmTI7lfL3inFzPH5heLNdcTudfTWqgpKwxUUTKRrTGyWD4MpmPUl++kjQNaUgs2Z3i5UfHSsqK6spX0lBTVNJA6oePEC+zxSkRbP4v0y53TXpbPerFv/A7B8oyOS+XSwRVVwlfHJPueVsNQ6PXI6aFrxHKW6Gi9ru4exfeVcFcMzW61dxvFm8ZqqyBtNVFlVNCypjaCGiVjHtbJy7Oi4Ej1EaC52+zrjj78VM4NjbMn404Hcrhdb06tk4e0dxkfFdqiPtpWzQAh4a8c7HE7cw7a4nbgSVrrvPeKLhtxSz2PMsgpb1j2SXTyfHJc5HUYZDU6jpnU5PI5jvgAEbHMA0joFfV24N4fe4rAyqtLt2GAU1ulgq54ZIYgGgRl7Hhz26Y3YcSDrqoZh3g1Y/S3i93jJ7dT3a5VWR1l5peSrndA1kkxkhMkJLY3SNB7y12vUSmKs26o4Q19NlV3lfx9knuFZTut1LBLRxOqHf5iXWmOQ9l19D0y52269LZ71GcGxtmT8acDuVwut6dWycPaO4yPiu1RH20rZoAQ8NeOdjiduYdtcTtwJKubKuCuGZtdau43izeNVVZA2mqiyqmhZUxtBDRKxj2tk5dnRcCR6iNBfV34NYhe4bAyqtJ5rDAKa3Sw1c8MkMQDQIy9j2ue3TG7a4kHXVFpt1TPH3xTVck3u13C22PjxmdryW9Wi5WHIairpKaiqzHSukjpKV5MsQGpQ8aaQ/YAA0Adk3x5L4o/OXEP/t6q/wD9y2buGGPVVhyO1VdvbLTZLI+e8MZNKxtVK+Nkb3D0y5gLY2jTSNa9uyYWrpm59FS5TBld44oZvacVyGut9xuuE0two4qqtkfTUtW+oljLomElsRLI2jbW9CS7vULzjxK+8GrnZqqqy2gvdlye0NuVBe7zJPPSvlngaOWdjvxkTmuMjDs6dpwDS1uuj7zwuxjIKquqLhbBUTVttZaJ3GeVvPSse6Rseg4Aac5x5hp3Xv6BYVDwTwq34rdscjsUclpuzg+vjqZ5Z5Klw1yufK95kJbyt5Tzbboa0pUm1VOP1xQjI7RV3HipjPDlmRX6147T2Gpuz56a6TNra+Zs8cbY31RcZSGCQuIDtnbd7AUAs19yPLchwnFpssvLKOmyq/WSa5UlUYp7jSU0Dnx9o9ug5w+AXgbBaXAh3VXlX8D8MulhtdoqrXPNS2t8klHKbhUipgMhJk5agSdrp2+o59Hp7Atja+FuLWQY2KCzxUbcdMzrWyF72tpzKwslOgdPLg52y/Z2Se/qoTNuqZ9/TgpriBll34KXfJcfpbncrgcjs0AxY3GtlqZWXEOZRvia+RznEky08x69/aH2q/sbtL7Dj1ststZUXGWjpo6d9ZVSOklnc1oBe9ziSXOI2ST3lQzKOHVxzTihjV4uhtox3G5H1tDExr31c1U6Ms28nTWMbvmAGyXNbvWlsLnbuIslwqXW/IMXp6EyOMEVTY6mWVjN9A57axocdd5DRv2BF6YmmZnw8FU8erldb7keQUmK1WRR3TG7K2trJ6O/G20FGXCV8TjGGPNRIQxxLXDk5WtGwSV9WasuvFXPsPpbjkN6ttDccBp7zU01nr30bZKl0rBz7YQW67Q/BI3oA7A0rJuHBmwZhUU10zC20V3v4gFPVVFH29LTVTGuJaySDtXCRo30bIX959uluMd4aY3idbb6u12801RQW0Weme6olk7OkDw8RAOcQQHAaJ6gADeuilTZ1TVjPJz5ZcovfEfCsEsEddkd1y51PcZpZLdfDaI309PWOpmz1M7GOc522sAa1p2XPLgsrAMnumXTeDvc75Umrujqq9089Q4gmR0VPURBxIABJEYJOhs7KuGq4C4LV262UL7I5kFtdUGmMNbURSME8hkmYZGyBzmPe4kscS36NBZEXBTCoLNbbTDYYoLfbbgbnQwRSyMFJUFxcXREOBY0lzvQaQ3qRrRRWLVePGcvLD0VA3KL8L2OEJvNx8utykSeUfGpPGjY+tbz9tvm3oeLb39H0LY0eCuvPHKGgsOWZg+047IK2/Sz5HVy08tQ8c0FC1hfy60e0kGiA3kb/SKsHG+HVx/C1es8v5tprnUQs1rit7Xkx0TZny80r363K8ubsNADeXQLt7WPQ+DhgNsvUl1pbdcoK6WsNwkey+1/LJOXcxe5nb8riSBvYIPceiJ2dU9/JTPD08V+KFjt+c2ut8Xr6uvdLufKJW0cUTKgsfSutwpTGNMaWb5+ffpc++isjg9a67I85z683PIr3VR2nKqqjoLabhK2kijFPFsGMHTx+M2Gu21paC0Akky+Lgbg9PljskhsbYLq6qFc50VTMyF1R39sYA/si/fXm5d767UmsGK2vGJLq+2UvizrpWvuNYe0e/tah7Wtc/0idbDGjQ0Ond3omi3MYa0tqtxwoe7yJdIv+yiulSI9d2i4Pd/jc/8Av2o/cK5lupHzua6QjTWRs+FI8nTWNHrc5xAA9ZIU5wmxS47jVJSVBDqxxfPUkHY7WRxe8A+sBziB9AC6aOFqqZ8Zj37zcunVRqxT4t6iIsniiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg528CP8AIbPf05vH3jV0SudvAkOsGz0noPPm8feNVtZnxdw7h/ilRk19yCkpLFBMKaWtjJnY2UnXJqMOPNv1aQS9FA7lxbp6TMsWsNFjmQ3mmyCn8ajvtuoe0t1LGQS0zy72wu0NDl/pBeVuu/EW91WcUdRYLZjUEDJIcbub67xvxp+nhk00TQORu+zdyb38IewoLBUCyHDpKKv7exVFLFJVOL3Wmqf2ccru97oSASxx73DTmk9dNJc46W7cJcrzvhpZrDlPEO626+wVZqa+84fq2vqmbk1AAebTAHsBOuvZgkdSpNU8IsTrOJtJxCntIly+ko/EILiZpB2cPp7AYHcmyJHDZbvWuvQK9Nc0/ZpRcqtzrUyqm2cX7Pd4L9LRQVNyFhk7K5m1mOtFM/ZHKeye4k+ifVvoe4ghSC25DU3ahhrKbHL8YJm8zDLQOjcR9LXEEf3hWtaMdtWP+M+S7ZR23xmV08/idOyLtZHElz3coHM4kkknr1K2KvrW/Gjzl279cyhUPlC4fNu9/ZR/EnlC4fNu9/ZR/EreRNa10eZv1zKFQ+ULh82739lH8SeULh82739lH8St5E1rXR5m/XMoVD5QuHzbvf2UfxJ5QuHzbvf2UfxK3kTWtdHmb9cyhUPlC4fNu9/ZR/EnlC4fNu9/ZR/EreRNa10eZv1zKFG5RnEWF2Ctvd8tN2ttpomdpUVc1LpkbdgbOj7SFn0d7qrhSQVVPj95lp52NkjkbSjTmkbBHpesFS3jTcfJPC3I6zzP8/8Asabm82ux7Xyh6Q/F8nZyb9vwHd3cpPYJe3sVtk8R8mc9NG7xLl5fF9tH4vWhrl7taHd3BNa10eZv1zKFYeULh82739lH8SeULh82739lH8St5E1rXR5m/XMoVD5QuHzbvf2UfxLQ1PEuho8wpMVmtd4iv9XC6op6J1C7mljaNuc0/BIGuvXp09oV+L+EA62O7uTWtdHmb9cyhUQuNe4AjHL0QeoIpR/EnlC4fNu9/ZR/EkvCC6cKeG96tfBualtl4qa/yjDDkdRPWUocS0yRAlxcxrw0929Fzj3nYkDuLNLZ+ImP4FeaG4MyC627xuOvpaCV1tkla1xlibN15XAMc7TvUW7OyAWta6PM365lCP8AlC4fNu9/ZR/EnlC4fNu9/ZR/ErbimjnZzxPbIzZHMw7GwdEf3EEL7TWtdHmb9cyhUPlC4fNu9/ZR/EveAXyucG0uNV4JIHPWOigjA9p24u+ppVromtb8KPOUTp1zKERxjCZKKqjuV4mjrLlGD2MUIIp6XYIJYD1c8gkc50dbDQ0OcHS5EVKqpqni4q66q51qp4iIiooIiICIiAiIgIiICIiAiIgIi/jnNbrZA2dDZ7yg/qKJS8V8RY7J44b/AEVdUYzTuqrvS0MgqJqNjQ8kPjZtwdqN3o65umtKK1XHKsvvC62ZlgWE3jMzcap1PDa3uZbpmsBkBmeZujWbjGj3kPadd+gtdFDa92fu4mWsUUePs4fClLq99Q6byoagiTlbEB+K5AeyJLjvq7Xd10tu4S3qstGbWrLM8umSUGQyvFMIYWUMtrgJdqOJ8feQC0c5A3y7110gnF8ymy4yKXyxd6C0+NSiGn8eqWQ9tISAGM5iOZxJHQdeq0cHFvFqribU8Pori9+WU1IK6ai8VmDWRHl5SZS3s9kO6AO30PTosWg4J4bTYzjdirbLBfqLHnc9ude2iskhfsnn5pN7d17/AFaGu5TkNa0kgAE95A70FU27ibnGacOMgu2P8PayxZLTVYp7ZasskFMKtnNHzTP5CSxoDpOm+vIOvpLYXLHuJOQSYDVsyu34saMRz5RbaKgFXFcHjsy6GGSQh0UZIlHN8LTm9+jux0Qcn+BNw/opo+JuRz11yqX1uT3i1yWyaqLqFsXbtcXNh1oPO9F2+o6LofDeF2J8P8bZj+P2CittmZKZxRxx8zO0OvT9Le3dB17+ip/wI/yGz39Obx941dEoP4BoaHcv6iICIiAiIgIiICIiAiLHNfTAkGpiBH/OEGQix/KFL8Zh/aBPKFL8Zh/aBBH+J9vyq64DeqTCLnS2fK5YOW311a0Ohhk5h6TgWPBGt/0Hd/ct5aI6yG00UdwlZPXsgY2oljGmvkDRzuHQdCdnuH5godxpseOZzwtyOw5BWV0dmrqbsqp1lidUVgZzA/io2RyOc7YHQMd6+ik1gkt1usVtpKWq3TQU0cURqDyycjWgDmBAIdoDYIHX1BBt0WP5QpfjMP7QJ5QpfjMP7QIMhF4x1lPK8NZPG9x7mteCSvZAREQVRUcF5eH2EZPRcIZ6PEr/AHatFyE9yElZTdttpkbyuceRrw0g8oOudxA3rW4HE2XH8sxLDr/arlPfbxQiR92tlukdaRUsYTLH2pJMZPI9zWu36OtnqNz9EHjS1tPXMe+mniqGskdE90Tw4Ne0lrmnXcQQQR6iF7Kr6/gvFiOLZczhU6hwbKL/AFLa6S4vp3VMJqA4FxMTncoDmhzfRGhzl3KT35x4iXXFr7hWL3+w3K7Xa80vLV32x0LnWunqmM29r3OdzRtdyyFu99APb0CwkWHbrxQXfxjxCtpq3xaZ9PP4vK2TspWnTo3aJ5XA9CD1CzEBERAREQEREBERAREQFqspyqz4RYKy93+5U1otFI0OnrauQMjjBcGjZPtcQB7SQPWtqqps+L4xceNmePmyDy7caygoGV+LVbRLBRMYCY5Ax2xt+t93eAg2d6432S1zYN4lbr1kdJmDmeT6+yUDqmnijd2epp3bHZR6la7ZHcHdPRKy7dlGaXDiFkNlnwxlrxmjpQ63ZPLco5mV05aw8hpm6kYBzOBJOj2Z0eoU0p6eKkgjggiZDDG0NZHG0Na0DuAA7gvRBU9Ng/ErLuF8tny7NKbHsrmrBKbthkTmNjgBB7JnbDez6Q5texby5cFcZv2XYplN4jq7rkONQdjQVs1XIwh2tGR7GFrHvO3b2NekeiniINPaMPsOP3O43G2WW32+4XKTta2rpaZkc1U//ikeBt5/OStwiICIiAiIgIiIOdvAj/IbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIiICIiAufqvjhbp8xuFktOP5DkTaGuFvrrnaqJslHSVBI5o3vc9pcW8w5uRruXfXS6BXK+I27O+FN/yOxUmHMySy3K/1V1pb1BdIadsMVTN2j2Txv8ATL4y52iwODgB3INte/CNxyx3W6QyW291NmtNYLfc8ipqNrrdQz7aHMkeXh/olzQ4tY4N31IXzkXhGWPHLhk0ElhyGtpsanbFd7hR0bH09Ix0UcolLjIC5vLJ1DA5w5SS0DlJr+/cNc+psQzvhta8cgrLTk10q6mnyZ9fE2Gkp6uXtJRLCT2rpI+Z4HKCHeidjqt7WcK8hbiPHm2wW90suSRSR2YPnj3V/wCjIoG7JdphMjC30+Xu33dUG+m4yXZvH0YXT43X3CxOs9NWtr6RsBAdLMWmdznTA9g1o5ejefma/wBEjlJwLLx7pbXaMqvN7Zfp4KbK2WCK2yWyBtTSSPjgDImNhkd2zC6QODiec8+uXoF8x4xluI8UMbyOixx19oZ8XprBXMgrYYZKGWOYyGRwkcA9mnuHoEnbe7qtJceFGVTsyAMtfMaribQZDD/nEXpUEfifPN8LprspPRPpHl6A7Gwms3hDWOgseUV1ys18tNXjhpfH7VWQRCqDKh4ZDIzllMbmuO+of05XbG+ikt/4oWTGMrdYrm+WkfHZai/S1r2t8XipoJGMk5nb5ub8YDoNI0D13oGreKvCDJc0vvFF9vpYmRXixWqC3TTTMayeppqiaZ0ZAJc3vYOYgD0vXo61ubcOM042ZbdpbnjT8OtdbhddY4p6qvgqJGVclRBI3nbC53oHsz1BOw075SQCFtcOuOFsyPNbLaaiw5Dj0t2bK+1z3mhEMVcGRukcIyHuLXcgL+WQMdoHp0V6rlvwfeHrbRmdnnuPBaxYdcqCmkD7/RTUjy+fk5CYGxgvDXtdISX8pAOtHa6kQEREBERAREQVrcOCdvsVpzWXh0+mwLK8ncyeovVNSicdu1xIkMLiGknmfvWht5cQTvf357ZJhdXgmPXywXPKa66xCnuWR2SlaKKkqQ1u3SsLuZkbjznm7hoDRJ0LHRBrbTklpv09fDbbnR3CagnNNVx0s7ZHU8o745ACSxw9h0VslU/CubDouLfFa3Y7i0tivdNVUMl6uHJyQ3KWWF8jHsAcRsBzuY6G3OJOydq2EBERAREQEREBERAVZYtdbJUcec4oKXFJqC+U9BQvrMic0iO4Mc09nG0+sx9x/OrNULsnnt+FHJfKfiXmN4rTeR+y14x2+j2/P69b1raCaIiICIiAiIgIiICIiAiIg528CP8AIbPf05vH3jV0SudvAj/IbPf05vH3jV0SgIiICIiAiIgIiICIiAsB1jonOJMGyTs+m73rPRBr/IND/Uf43e9PIND/AFH+N3vWwRBB+J82P4jgN6vF3vFVi9tpIO0nvFFH201K3mA52sdHKHHqBoxu7+5b2z2u2V1poqmBz6yGaBkjKiQlrpWloIeQANEg71od/cFz5x18Nvg3i1ky7Ha+emy2+250lHUYpX26pZFVTMk5XROkfTui0CCeY7adDW9gqweCnhOcNONMtPZsOvcVRdYKDxqW1RUk8XisbOyY4bfGxvK10rGjXf118E6CzfIND/Uf43e9PIND/Uf43e9bBEGHBaaSmlbLHFyvb3HmJ/8AVZiIgIiICIiAiIgIiIIZiVVm02e5tFkFHRQYpFJSDHZ6cgzTMMRNR2oDiRqTQGw3p7VM1W3D+1UNFxX4mVdPmj7/AFdXNQGpsDpeYWQtgIa0N5jy9qPT7m716+9WSgIiICIiAiIgIiICrLFrVZKfjznFfS5XNX3yooKFlZjrnEx29jWns5Gj1GTvP5lZqrLFrrZKjjznFBS4pNQXynoKF9ZkTmkR3Bjmns42n1mPuP50FmoiICIiAiIgIiICIiAiIg528CP8hs9/Tm8feNXRK528CP8AIbPf05vH3jV0SgIiICIiAiIgItNkmVUeMwxCZslTWT83i9FT6Ms2tcxAJADRsbc4gDYBOyAYZU5RldxJdHPb7PGdcsTIHVMg/O8uaPqb9a1i3jGNUxEfX/HFvbsXLvGmFmIqr8p5X842fu+P3p5Tyv5xs/d8fvU6lHzI/N6N9yurURVX5Tyv5xs/d8fvTynlfzjZ+74/empR8yPzehuV1aiKq/KeV/ONn7vj96eU8r+cbP3fH701KPmR+b0NyuuIv8qJwMFiyu1cTbZThtHeOWgunI3o2qY09nIf+/G3l/PF7XKz/wDJg8DDiuDXHiRc4DHcr+DR2/nGiyiY8Fzvb+Mkb6/VE0j4SuziBiFVxTxOtxnKbjDdrJW8nb0r6MR83K4PaQ5jmuaQ5oOwQVs7BSXvF7Hb7ParzDRWygp2UtLTR2+PliiY0Na0bPqAA6pqUfMj83obldXGiqvynlfzjZ+74/enlPK/nGz93x+9NSj5kfm9Dcrq1EVV+U8r+cbP3fH708p5X842fu+P3pqUfMj83obldWoiqvynlfzjZ+74/ev75Tyv5xsP/wC3x+9NSj5kfm9Dcrq00VbUmY5Na3c1XHRXynA9JtPGaWfv/o8z3Mcdeoln51OLFfqPIqEVVHIXNDjHJG8cr4njvY9veCNj+4gjYIKrVRhGtE4x9PeLnuWa7X8UNiiIs2IiIgq7hvdcXrOMPFWks+PVVryCkntwvN0m32dxc6nJhMfpH4DNtOg3qfWrRUMxKqzabPc2iyCjooMUikpBjs9OQZpmGImo7UBxI1JoDYb09qmaAiIgIiICIiAot5yVfsj/AFf5qUrhvF8TipMT425pabcK7OLdfsgdaKt7TLLSvDHACBp6NJ5nEgDbidHehoOu/OSr9kf6v814svtcyqllNRzxvADYHMbyM16xoc3X6Sfo0uROBnD2mmvODZNZs3xVtRNB43UxWmCobcLvG6LUrKl0lZJ2jg5zXOLmba9o+D3KMWrAbHbPAlqMmit8b79UUg8Yucm3zCAXJj3MDj8GNojB5RoDl33kkh3R5yVfsj/V/mvWkyCqmqoY3CPle8NOm+on865F47Xy3XbiJlcdDX01Y+HhRfXSCnla/kDpIS0nR6bAJC2+BYtbMF4tcEamx05oajIrTVtu8rZHOdXllPBKx8xcSXvD9kOOz6RG9IOx0REBERAREQEREBERBzt4Ef5DZ7+nN4+8auiVzt4Ef5DZ7+nN4+8auiUBERAREQFj3CvhtdBU1tS/s6emidNK8/0WtBJP1BZCi3FLn/B5f+Tf/wAI/m5e/l/pf4drW1TFdymmfGYTEYzEIZbXz3F8t3rh/pCuAe8dfxUfUxwjfcGBx/O4ud3uKzkVEcYLNjV/4+4DR5XFQ1FqfZLqexuLw2F7w+l0CCQHdNnR33b9Swrrm5VNUvqJwt0xFML3Rcb0Vto8otGLWWOpnrcNj4pT0dne2oe5r6BtHOTHHJvbou07ZgIPVuxvSnN2wrCJ+MtyxfLaW30GJWjHqeosNpnl8Womc80xq52N21vaNIjHMOrQQem9qjOLszyh0ei5C4R2Sn4o5Fw6pcvgkv1C7ELnJHHcnOcKmFlyjjppJWn4ZMJY4F2+pDu/RXjgOMW7H+H/AAhymhifDkU2YeS5rkZnvmlpDUVUHYOc4kmMRxsAb3DlGvWpwRF6Z44e+Hq7DWot2WWy65HeLFSzmS5WhkD6yLkcBGJg50fpEaOwwnpvXRcfV9uxa28IcuyKhkpafiXT5ZcGWipp6jVeak3JwihY0O5i1wPVmtFrnEj1q2sJxbE6PwoeIlZW261099ZHbKq3yysY2bmlhmbM+InqS49HEd/rTBMXZmYjD3x9F/Ii4wtdwo5s8wHPLPHYsakv+WvozRU9TNJdaiB5mZJ4050vIWlwB7Ps/QJjAcO4wvXc1MHZ6LjwYxbbbwoumb09OY8pt+eSCmufaOMsUbr2InRNO+kbmyP2weiS4kgkkrD4z3Cjrbxlmb22OxY3c8fyOlt0dZUVMzrvVTRywNeY/wAa1kURYT6HI8OaHuIG9qcGc3sIxmHV9jzehv8AleS4/TxVDK2wOp2VUkrWiN5mi7RnIQ4k6HfsDr3b71IFz1VYrS8QM/494lJVR09fcae1y0u36kje2kHZTtHfpkrWHY9YWgxW/WDjfHf834hW+Hzaxmxw2ispa+PcTK4FtRXkN9rXsp2DXUluh3ottJjh9/J1Ii4zbjNBg3ArOM1ximoMbvuQmmkko7YeaSz2gzxtLS2NweH9k5z5CCCHOOiOQEb6LhvT4zjeb3KzZXislC7ELgKmzYvTyxsqmvhcYqiQPq5htpa4B4AJ53Ak+pgrtpy83VyxPKPmtd6e9RkRwF7ILgOupICS0OP0xucHb/4ecf0lB+BOFWfEuHFgnttGyGsuFso5q2rcS6aqk7EHmkeeriOY69gOhoABSzMdeaN75t68Rn3y9/8Aq3dy2sT/APSmPCeE/aWlVMXLcxV4rlReFF2nicHbf67s28//AHtdf+q91E8Hy4iIoFbcP7VQ0XFfiZV0+aPv9XVzUBqbA6XmFkLYCGtDeY8vaj0+5u9evvVkqruG91xes4w8VaSz49VWvIKSe3C83SbfZ3FzqcmEx+kfgM206Dep9atFAREQEREBERAULt2Bx2cVIoKOiohUzvqZxTRiPtZnnb5HaA5nO9bj1KmiIK5tHB6yY/dqm6WvHrLbbnU7M9bR0ccU0u+p5ntaC7f0lafHYbRJkl74eW+xeIQWekikliFC2K3SRzgnki0OV3r5m6Hf69q3lC7J57fhRyXyn4l5jeK03kfsteMdvo9vz+vW9a2g0tv4GYzaYJYaHFMeo4ZqeWkkjp7fFG18EujLEQGdWP5W8zT0OhsHS3dLw/pIblaKt1uoO1te20cohbz0rCA1zYjy+gC1oBDdbAAUzRAREQEREBERAREQEREHO3gR/kNnv6c3j7xq6JXO3gR/kNnv6c3j7xq6JQEREBERAWPcKGG6UFTR1LBJT1EToZGH+k1wII+orIWLWXSit0lOyrrIKV9RIIoWzStYZXnua0E9T9AUxMxOMCrbcye2vks9c7/SFCA1x6/jYtkRzDfeHBvX2ODm97SojmXCG053ndjv16ho7nQW2hqqN1pr6JlRFMZnRODyXEgcvZd3Kd83eNdZ3e83w/PMkyHFrbV1FbmeMUzqmWCigfHPTlzQRG2R7OzcX+h6G3A+iSOgIjPD1/ELJcUgul3xCOzVcj3N8n11YIqlrAdNc5rQ9o5ho65gR1GugJ1qoi7OtRMRM+HLt4Ye/q9u1pVuunVuc21bjFmbTW2nbaaEQW2QS0MQpmctK8NLQ6Ia0whrnDbddHEeteORYbYMwZAy/WO23tlO7nhbcaSOoEbva0PB0eg6hbLyZlnzcj/eEfuTyZlnzcj/AHhH7lXd684/FT6unb2eWtDwbZLcy4w3BtBStr4YDSxVQhaJY4SQTG12thhLWnlHTbR7FjxYlY4aGjoo7Lb46OiqPG6WnbSxiOCbmc7tWN1pr+ZzjzDR24n1lZ/kzLPm5H+8I/cnkzLPm5H+8I/cm715x+Kn1N4s9UIDw94I4/g8lRWzUFtut8kuVZXx3eS3RsqYhPO+Xsw88ztN5+XexvW9DuUmyHCbRkVQyvmoKNl8p4nR0V4NHDLVURO9PidIx2iCdgEEb7wVuPJmWfNyP94R+5PJmWfNyP8AeEfuTd684/FT6oi9YiMImEMpsAySCpikk4mZDURseHOhkorYGvAPVpLaQHR7uhB+lbgcOsUFbVVgxizeOVcrZ6io8nxdpNI1wc173cu3ODgHAnqCAVu/JmWfNyP94R+5PJmWfNyP94R+5N3rzj8VPqbaz1MB2JWN1sltrrLbzbpZ/GpKQ0sfZPm7Tte0LNaL+0Afza3zde/qsWv4fYtdblU3Gtxq0VlwqojTz1dRQRPlmjI0WPeW7c3XTROtLc+TMs+bkf7wj9yeTMs+bkf7wj9ybvXnH4qfVO3s5w1N3xeGdlRWWmOhtWQmjdRUt3dQsmkp2EghuvRLmAgHk5gCQFpcW4SWKxYNJjNypoMlpaqolrbg+6UsUja2pklMr5Xx8vJ8M7A16Ia0DuUw8mZZ83I/3hH7k8mZZ83I/wB4R+5N3rzj8VPqjbWMcdaGgx7hlh+IzzzWLE7HZZqiIwTSW+3QwOkjJBLHFjRtuwOh6dF62nh5ithpK6ltmM2e3Utex0dXBSUEUTKhpBBbI1rQHggkEHfeVgzZffqCoyLyph9bZrfYqc1dVdbhURx0boQHFz45eofoMJIHUDWwNhbbGrldcxstLeLFb6C72qqaXQVtHdopYpACQdOaCOhBB9hBHeE3evOPxU+pt7EeMNpS0sNDTQ01NDHT08LBHHDE0NYxoGg1oHQAAaAC8RbvOm709mjAkga9k9wPXUcIJc1p+mRzQ3X/AA859XXPpMNya5u5ayaisdOR1dSvNVP3/wBHmY1jT9JDx9CnNjsVHj1CKWijLGFxe97zzPlee973HqSdDr7AANAAK1NMWZ1pnGfDDw+uPL3xct/S6dXVt82wREWLxhERBDMSqs2mz3Nosgo6KDFIpKQY7PTkGaZhiJqO1AcSNSaA2G9Papmq24f2qhouK/Eyrp80ff6urmoDU2B0vMLIWwENaG8x5e1Hp9zd69ferJQEREBERAREQEREBVli1qslPx5zivpcrmr75UUFCysx1ziY7exrT2cjR6jJ3n8ys1Vli11slRx5zigpcUmoL5T0FC+syJzSI7gxzT2cbT6zH3H86CzUREBERAREQEREBERAREQc7eBH+Q2e/pzePvGrolc2+BRc6SHEc+pX1MQq/PS9VHi/ODIYxKwF4Z3kAkDeu8hTyHwhbPl3DW45fw3t1bxIjpK3ye2jtbDA+Sb0ObrMG6a0SNJdojXUbCC1l8yPbExz3uDGNBLnOOgB7SoDXy8SLnlWIVVsisVpxV9OJr9RXHtJLiyUt/1UL2bjIaT1J9behIK+bbwhDqvOfOLJrxldpypr4JLJcpQKOipnB4MMDWgObtshaXc2yA31gFBlZ1xswrhvYbdeb9foae2XKrFDR1FOx9S2eckgRt7Jruu2u+gcp33L2fm97/ChHjEWG3F9jFGaibKHTRtpWPPwYms3zPJ0Qe7XTpo7Wzw/A8fwHHLdYMftVPbLRbi51JSxglsJcXFxaXbOyXv2d79I+1b9BVdsxLiTmGDZLZ82yOgsFyr6r/R9ywkyRTUlKHNIHNMDqQhpBI3rnOj0C20nBDE7icJqL5Ry5Nd8Piay1Xe7zGSqa9oj/GyObytfITExxc5veCRrZ3PkQfwNDSSAASdnXrX9REBERAREQEREBERAREQEREHjV0kFfSy01TDHUU8rSySGVgcx7T0IIPQg+wqBZXwWt16teOW+xXa54JR2Gu8dpqbF5GUcMm3EvikjDdGN3M/bRrq4lWGiCDU91zui4kXxlztlofw9joRUUFfRTSvuImaGc8ckPLp2z2hbyeprR1J0PThtxdx/ijiVNkFsdV0FLNUuojT3endSTsqAdGItf3u309EkE7AJIKmqinEvhZi/GDGTYMutTbvajK2cQulfEWyNBDXtcxzXAgOPcfWglaKEy4plkXE+gvNHlscGFx0PitRixt7DzSt5uSZk++Zp9IAt1rTAtLZ+Nj7Vht9yLiTj83DOjtNeKJ0lyqo6iOZrnMbHKx8W9tcZGju0DvqQ0kBaCLGttypLzbqW4UFTDW0NXEyenqad4fHLG4BzXtcOhaQQQR0IKyUFXcN7ri9Zxh4q0lnx6qteQUk9uF5uk2+zuLnU5MJj9I/AZtp0G9T61aKhmJVWbTZ7m0WQUdFBikUlIMdnpyDNMwxE1HagOJGpNAbDentUzQEREBERAREQEREBQuyee34Ucl8p+JeY3itN5H7LXjHb6Pb8/r1vWtqaKrcZpMepPCBzSeDMH1uR1luo/GMYkk6UUTG6bKxv/PzDZHtHtQWkv45wa0k9ABsr+rzqHBtPKSQAGkkn1dEGH5eof6//AAO9yeXqH+v/AMDvcuf8D4vX7iLPSXW14WY8Gq5JGwX6qukccz4m8w7fxbk2I3FvTb+bRB5QFprN4RlVc47HfJ8Qmo8CvlxZbaC/Or2Omc6SQxwyyU3KCyKR4ADuckczSWgFB0z5eof6/wDwO9yeXqH+v/wO9y5ip/CNubqM3qows0+KQ5A/H6q5+VGuljkFWaVszYez9KMu5N7c1wLiA1wAccjB88zu78bOJFlqbVQ1NgtVRTxU7jcuV9M11L2kfKwQen2ri1zuZ3ocxA5w0bDpXy9Q/wBf/gd7k8vUP9f/AIHe5cmYTxtutDj2PU8GOVt3vmRZFd7cKSuvomFLNA+Z7gJ3Qt/Ejs3AAN21gGg8gAyWi8ICV9LRxV2N+JXkZbFidfRCuEjKeSRnaCZkgjHaMLHMIBawnZB1pB0d5eof6/8AwO9yxqnL7TSV9roparlqbnUOpaVnI705BFJMRvWh6EUh6+zXeQqDzPwg7Zgd1zemutCY6fG6a2ysnFS1prJax0rI49PDWxgOjG3udrTiToNO8/gF4QtJxIz+rxmemtUF0ZbX3GJ9jvsF2p3RNkYx7XPjDTG8GRnoluiCSCdFBOqLPM0zSyZrFYsPmxe82yZ9JZ6nLBqluEjXOaZOSJxeIttBDv6Qc0jfULzr+HWZZjYsKN8ziqx+92mZtVdhiv4qmuTw5pEZ7Qcwj9HqCOoc4EdVaCIOVfAf4f49EeIWZNtcIyeXLLvbn3Lbu0NOJ2uEffoDm69B10PYupaalhooGQU8TIIWDTI4mhrWj2ADuXPXgQubJgedvaQ5js4vDmuB2CO0b1C6KQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFjXG3Ul3opqOupYa2jmbyS09RGJI5G+xzTsEfnWSiCDXrhJb7tm2LZJT3a82Z+PROp4bZaqzsKGohI12U0IGnNB5SANfAb6gtXT5PnuF0ufXjMrZQ3ix257qqw0+KQzT3Cpp9vPZSRu0DKAIwC3QOzvWtqzUQUjwVy7F8gznLsgoM7mr6nJzQzRYpdXdhUWjkpyOzbA95cDIPxhAaPUeo0Vdyoe18P+F/E3jZm8tZgBOUY1cbbVzXyta7kqajsQ+F8JD+5jWMDm6AJA2CpxBi+Y49luX5FHlE+R2utpOe2YnPTRQspqljAAGVG98r+UDR0AXFx2gsBFVLOPdFhvD6w5BxVoW8Na+51pt3k6pqPHAyf09fjImkcrhGXBx0AC3Z6hWsgIiICIiAiIgKOX/DKWtq6292ult1vzJ1vloKO/TUTZpYGu6tDuoL2B4a7k5gDr1bUjRBWuO8RjhcOGYpxLyKzR8Qr1HKyJtAySOnrXxuA/Flw0HEOZ6J5eZxcGjppWJVxtmpJo3jmY5jmke0EL4q7ZR181JNU0kFRNSSdtTySxhzoX8pbzMJHou5XOGx104j1qqX5jWcAMXuFx4pZeb/a6u+djQXGC0uY6kgmO42VHZbaGtdzN59Aa5R1JAAV/wAMMB4g8OaC2YeanG7phFuc6CKtmM7bi+k9IsidGG9nzt2G8/NogfB2o9aOBOZx2LGMFuF0sr8Cx65QVkVXD2puNXDBL2sEEkZaI2aIYHPa47DegG11u2hpHNBFNCQRsHswv75Ppfi0P7MIOWajgdfZuDt4xMVduFxrMndeo5TJJ2IhN1bV8pPJvn7NpGta5um9dVJLZg+U41xkyLILbJaKrG8kNJLXMqpJY6umkgh7H8UGtLHhwDD6Rbo7710F5Ppfi0P7MJ5Ppfi0P7MIOWcW4HX2x3fDKqertz47Lk16vNQI5JCXw1jakRNZtg28dszmB0Bo6J6b+L5wNyGrqMmuNDW2xlylzCkym1R1DpDE4QwRRGKchu2c3JJ1aHa209eoVx8E7ZZbDZrniMGWz5xdLBWSRV9Vc3margdK4yMike7ZdytdoEk9AB6tKxvJ9L8Wh/ZhByJeOAOX5zcM6ut+uVmtd0vAs9RaTbO1qGUVTQySyNEnaNb2jSXtGwBsOd6I0N3PwYpM0iu1dJl1JjFGPF2sp2Y+Znku36bnvka3QPo6aAdaO3FWp5Ppfi0P7ML7ipYYHc0cMcbta21oBQeqoLwieIV7vt7t3B3AKowZnkURluNzi6ix2zepalxHdI7ZYwbB2d7B5SZzx04xUXBXBpLvJTPul4qpW0Nns8PWa4VsnSKFgHXqepI7gD3nQOm8Hbg7W8OLJcb7lNS268RcnlFff7j0IEmvQpo/ZFEDytA6d5GhoAJxw44e2XhVhNpxXHqUUtqtsIiiaernnvc959bnOJcT6ySpKiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIghtK/Nm8W65k7KB3D42iN9NK3pVNr+1IewjfVnZgHfTqQOvXUyVXcTrZY7ZxO4bZbesrqLA6krJ7PR20EmC61NZHyRRPHcHN5XFvTv9fRWigg3FC45HSyYrSWLGKXJKOvvUFPeHVhaWUVCQ4yThpILnAhuuhHfsKcqvrvbKi8casfqqTOWUkNmt1Q+uxCCQc9WJtNjqJWh++VpaeUlnfvTupCsFAREQEREBERAREQF8SxMmYWSMbIw97XDYK+0QVpdqO8cMrzm+d1mQX7J8ekomTw4lS0TJ5KaWNunGm5dOPMA30Og2XOJO+kssedWa+4PSZcyq8SsFRQi4+NXFppRFByc5fJ2muQBuySemhveuq36/LD/KTcc5Mm4ovwuzT5DbKK003id3gqZpaejuEnO2VhbTEDmawhpErtiT0S0crGveH6YYJndh4mYpb8lxm4Mutkr2ufT1bGOYHhri13ovAcCHNIIIB2FnZBkdpxK0VF2vl0orNa6fl7auuFQyCCLmcGt5nvIaNucANnqSB61+fX+Sx41mKpvvDC4z+hLzXW1c7u5wAbPEN+0BrwB/wyH1r9CL5ZaHJLLcLRc6dlZba+nkpaqnk3yyxPaWvYdeotJH96Dk/L/Do4K8IuKuSRW+jgvT6+hgrbjkGMdnUur6trmRx03N6LJCyFxfz9ryt05vw9tXRPBvixaON/Dq1ZnYqaupLXcTKIobjE2OZvZyvidzBrnN72EjTj013HYH5KeF/wCCrcvBuzbdK2auwy5vc62XFzd9mepNPKe4SNHr/pDqP6Qb+rfg64Z+D7gVglgdF2M9JaKc1EetanewSS/43vQWKsC+3ygxmy113utXFQW2hhfUVNTM7TIo2glzifYAFnrmHOp5fCu4rTcPrfI/8F2J1TJMqrYnaZda5hDo7cxw72MIDpNesa9EhpIZfBKx3Dj1xBHG3KaSWls0DH02D2WqGjTUruj697f62bXT2N13jlK6TXnBBFSwRwwxshhjaGMjjaGta0DQAA7gB6l6ICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOZfCb8K3g5gdDNbr1Nbc2yqx1UNwo8ehc+Qx1ccpYC6djHxwyx/jHFryHDXd6Tdw4f5VThORvzezPQ7z4jSdP/wCUo5/lGvBR867ZU8VsXpi69UMLfLlKwbNTTsbyioH/ADRtADvaxoPTk9LnXgl4P/nr4GnGDMHU4kr6aogkt7ns6xtox2tQ4evTo5nD87PoKDrvh14aXg7ZBxGuOT+PVeLZVd4qW2SVd7gmayeLoWAuaXxQtY5xa9ziwbBJLmgOXXq/JnwBvBNPGbKxmOUUBfhFnl/Fwzt9C5VI6iPXrjZ0L/Uejeu3a/WZAREQEREBEXxLKyCJ8kjgyNjS5zj3ADvKDTZPlcGORxRtidW3CffYUcTgHOA73uJ+CwbG3fSAAXENMHqa/I7s4vq74+ga7uprXExjG9fW97XPcddN7aD1Oh01i2erlvTZL3VBwqrlqYNeNOih6mGL/wDS09f+Zzz05ivK/wCWWPFI4ZL3ebfZ2TFwidX1TIBIWtLnBpeRvTQSddwBK2qr2MzRRzjnPPt79Hu2dFoop1q4xl7GgrySfOK9fa/5J5Pr/nHevtf8liRZtjtRZqe8RX+2SWmokbDDXsrIzBJI53K1jZOblLi4gAA7J6LEl4nYdBZm3eTLLHHaXTGnbXvuUIgMo72CTm5eYeze1TeLubp2drKG28n1/wA4719r/ktZf8HpcrojR3usrLxSHvp7g5k8f6r2kLJuWaY9ZqKnrLhfbZQ0dREZ4aiprI445IwAS9riQC0BzSSOnUe1YtHxJxG41dBS0mU2Wqqrg3no4IbjC99S3ZG42h23jYI2N9xTeLuZs7WUIhYfBpwLFcppMjstpFnvVJzdhV0AZAY+ZpY7QY0Dq1xHd61Yfk+v+cd6+1/yWrqOJOI0l38lT5TZYboZ/FvEpLjC2ftdA9nyF3Nzac08ut9R7VqKvjTilBxQ8w6q7UlLezSRVDRPVRMD5JH8sdO0F3MZSNO5Nb5XNI3tTvF3MmizHhDZ5Vw+oc6tJteRVdbfbaZGSmjuD2zRF7DtpLXNIOiP/EdxW3FurgNDIr1r/wCr/ktgtHHneNTXWttceQ2p9zomOkqqJtbEZqdrRtzpGc22gDvJA0o3i7mnZWo/2wy32yukY5pyO96cNHVZo/XpaXDuHNBw+scdnxutuNmtkb3SCmpajlaXuO3OPTZJPeT1W5bktnfBa5m3WhdDdeUW+QVDOWs5mF7exO/xm2AuHLvYBPcsBvEXFHX3yI3JrQ689r2Bt7a6I1Ak0TyGPm5gdNPTXqTeLuZs7WUNl5Pr/nHevtf8k8n1/wA4719r/kta3iLijr75Ebk1odee17A29tdEagSaJ5DHzcwOmnpr1L3Ob463IfIBv9rF91vyWayPxnu3/qubm7uvcp3i7mjZ2soZfk+v+cd6+1/yTyfX/OO9fa/5LXniBi7bhcKA5JaBXW6N81ZSmvi7WmY0bc+RvNtjQOpLtALUcMOMWMcWMVF9stypjExnaVNK+pidPRt27l7drXHsyQwnqe4H2JvF3M2dnHDCEnFBXjqMjvW//qt/+iyqS65LZnc9Pd/LEQ76S6sY3f0NljaC387mv/N7NLbeIOLXm111zt+S2iuttA1z6uspq+KSGnaAS4yPDiGAAEkkjuKzrNktoyLxnyVdaK5+LP7KfxOoZN2T9b5XcpPKdEHR9qbxc8eP3iETZs1RhhCyMbyalyWle+IOgqoSG1FJKR2kLvUDrvB7wR0I7lt1UtRXux65UV6jJa2CRsNWGj/WU73Brt/9wkSD/ukesq2kqiMIrp5T+rxNIs7GvCOQiIs3KIiICIiAiIgIiICIiAiIgIiICIiAiIgjvEWuqLZgORVlJM6nqoLfPJFKw6cxwjJBH0gqDeSq75x3v7Z/JTLin/s0yr+zKj7ty0Cx0q9csWaJtzhjNX6Uvn/2vfu2Yt7OqYxx5f0azyVXfOO9/bP5J5KrvnHe/tn8ls0Xl79pPXL53ftJ+ZPdq32iskY5rsivTmuGi01ewR9S01l4aWvHMefYLVNU22xva9j7bSGOOncH75wY2sDTzbO9jrs7WymzfHKfIWWGW/2uK+vALLY+tjFS7Y2NRF3Men0LyquIWK0Nyjt1Rktnp7hJOaVlJLXxNldMNbjDC7ZeOZvo636Q9qnfdK65W3vS+uXjjOB02GWGjsliuVztNpo2dnT0dJUBkcbdknQDfWSST6yST1K2fkqu+cd7+2fyWvzPiBYcEojLd7vbrfUPje+lpq2sjgfUuaN8jA47cT0HQHvX1w9yzz8wPHck8V8R8r2+Cv8AFe07Tsu0jD+Tm0ObW9b0N+wKd90rDHXlO96Xq62vOH3Z3kqu+cd7+2fyTyVXfOO9/bP5LZoq79pPXKm/aT8ye7ZcLaqrnpL9BV1tRX+K3MwxSVT+d4Z2ELtb/O931qbKC8K+7Kf7YP8A5anU6XvVzjMTPjEfpD7uxVNVmiqecxH6C1GX001Zid6p6cE1EtFPHHrv5jG4D/qtuirTVq1RVk35KkscsdRZbfLFoxPp43M5TsaLRpU74QV4suP8QOEVxyGWCC0U92rXzS1LOeNn+YzcriNHudynfq7+mtq55bU7Ebm60vaW0Mj3Pt0vLphYSXGDf/FH10PWwAjZD9afIMIockyTGb3Uy1DKrH6iappWROaGPdJA+FweC0kjleSNEddd/cou06tc4cp5fZ9NFW1txNP0crZBSWvLbXmlytNGDgN9zbH46JnYGKnq3iSGOrljYQNse4gFwGnFpPVWbxCmxvBuPFnvOYQ0tFiPm5LR26oqqcOo6et8YDpW9AWse+LkAJA5gxwB9SvxFiiLWHi5J4cWNsuR8IG1dsMNlnvuS1tmoa2DRgonNe+m/FuHo6BDmjXQELwuVgtlt4OcSa2kt1LTVdJxJbJTzwwta+JwutK0FpA2NNc4DXqJC69RTijYxhhj7wwcf5DlGFUds4949eooK7Jrte6qG225lIZqqqkdRQNgEWmkkiXZGj6J69N9Zvb6+l4e8bsYmzWeKkq6/CqK3MrqpnM2ouMdQe0YH6IMnptPfvRV04phFDh1ZkVTRS1Esl8uTrpUidzSGSuijjIZpo03UTeh2dk9fZvpYxNE+MlwDgWkscWkb9hHUH6QoItTzmX0uUsdqrXac/vmG4dNRZZSXdl6km5reY7jY6hzXOc2SctHPDJIeRvMAerdOcArv/AtZflnL/8A7suf/wDep6xoYxrQSQBrZOz9aNKqZrwx4OUMczqy361eDnj9DWmW8Wqop6e4UzY3B9FLFbJo3xy7GmP5gdNd1IaSAQNqP8DquzXnJ+HmONuGO2264lX17n3JlcwXC8Oc2WPTYS0SNL+fneJOvodx9XaCrSl4EW8X+33K5ZPk+QQ26s8forddrg2WngnG+V40wPdy8x0HPcB7FLGbVUTE8/cejnvgZWWW75Tw7x0V+O2+6YlX1z5Li2uaLheC5ssfKIS0SNL+fneJDv0O4+rz4bYrYb1baHE8xza62jOhenS1dkZaqQVJrBUmRlQyfxUzFjtNd2vaa5TrmA6Loil4EW8X+33K5ZPk+QQ26s8forddrg2WngnG+V40wPdy8x0HPcB7FZaYopszh+975ejmjhhdLHjfGl+LYzUUGV2q5VV0qKwyW4suFil5i+RskxaO0hkftjeYA9W6c5oUNoayK6eCXHitpdL5fsU9OMltVHTB1bFTR1pMwMTmkPPKC7lcCHNBBBB0eyUUYtNjwwxz83JFxs+HXjA+J+S43nNXldbTYZXUMzW2+mpadsUkbntDjBTRBz2mM6BJLQ49BzLpPhvZqGw4Hj9Jb6SGjp2UEAEcLA0f6tvU67z9KkiIvRb1ZxaPOWmTDL3E0c0ktHLFG3etvc0taP7yQrpAIA2dn2qsLNa3ZVfaeNrSbXbp2z1Mhb6EsrDuOJp9Za8Ne7Xdyges6tBddX7tumiefGe+Ho8jTa4qrimPAREWLzhERAREQEREBERAREQEREBERAREQEREEW4p/wCzTKv7MqPu3LQLf8U/9mmVf2ZUfduUYuNCy52+po5XzRR1ETonPp5nQyNDgQSx7CHMd16OaQQeoIK49P8A9G396v0pfM/tvla/r/ZkIoAOCtlBBF6y/Y//ADbcz/76+ouDFmhlZILzlzixwcA/K7k4HXtBn0R9BXi4U5vmsLec9v8ALmbEsVsN7p63D83ze7WLNKq/zGptEVppDUTTuqy+GohnNK6YsIMbhL2mmjY2GhSPLbHb6rhb4TNdLQ08lcy81JbUuiHat7OjpXx6drY5XEuHsJJ9a6zRbbbjjg650yZq1sPeMTl9Pq5Xvt7xiw8RuJbuIUcHlC8WikbYJ7jSmZlRSik1JDAeVwDhOZC5g6kuB0fVc/g9f7B+Hf6P0P3DFYKh9+4XWvIbtPcKi6ZJTzTcvNHQZFXUsLdNDfRiimaxvd10Bs7J6kqs1xVGEs6r1NynVnhy+vKMOXBMEUBdwXszg0G9Zdpo0NZZch699fx/Xv8AWpPjOM02KW51FS1NxqonSGTnudwnrZdkAa7SZ7nAdO7eh19pWc4eDmmKMOE+X+Ul4V92U/2wf/LU6nSgvCvuyn+2D/5anU6X1NX+3/rT/wCYfoujf6Fv/rH6CIio6GHdbTR3yhko6+nZVUz9EskHcQdhwPeHAgEEdQQCNEKF1PDm60biLVfWSQf0YbpTmZzfoEjXNJHq9IOPtPtsBFpTcqpjDw+vFrRdrt/wzgrU4ZluzqpsuvVtsyeZmXfGbJ+rMrKRX2sdMdm293s1a+ZmXfGbJ+rMnmZl3xmyfqzKykTax0x2N7vZq18zMu+M2T9WZPMzLvjNk/VmVlIm1jpjsb3ezVr5mZd8Zsn6syeZmXfGbJ+rMrKRNrHTHY3u9mrXzMy74zZP1Zk8zMu+M2T9WZWUibWOmOxvd7NWvmZl3xmyfqzJ5mZd8Zsn6syspE2sdMdje72atfMzLvjNk/VmTzMy74zZP1ZlZSJtY6Y7G93s1ajDMt31qrKB7QyY/wDqsuk4a19Y7/TV8MlOe+ltcJpg4ex0he5/6hYf/Wfom1mP4YiP6InSbtUYTUx6CgprXRxUlJBHTU0TeWOKJoa1o+gLIRFjMzM4y5RERQCIiAiIgIiICIiAiIgIiICIiAiIgIiINPmFkkyTFLxaYpWwy11JLTtkeNtaXNLQTr1dVD/M/L/jNk/VmVkIrTNNVMU10xMRn9cPRz3tHtX8NrTjgrfzPy/4zZP1Zk8z8v8AjNk/VmVkIqalr5cdnP8AD9F+XHmrfzPy/wCM2T9WZPM/L/jNk/VmVkImpa+XHY+H6L8uPNW/mfl/xmyfqzJ5n5f8Zsn6syshE1LXy47Hw/Rflx5q38z8v+M2T9WZPM/L/jNk/VmVkImpa+XHY+H6L8uPNF8CxmuxqkuflGenmqa2tNUfFQ4MaOyjYB6XX/s9/wB6lCIr1Va04u6mmKYimOUP/9k=",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Image, display\n",
    "\n",
    "try:\n",
    "    display(Image(graph.get_graph().draw_mermaid_png()))\n",
    "except Exception:\n",
    "    # This requires some extra dependencies and is optional\n",
    "    pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "User Message:\n",
      " \n",
      "今天下午3点,在北京国家会议中心,阿里巴巴集团董事局主席马云宣布将投资100亿元人民币用于农村电商发展。这一决定受到了与会代表的热烈欢迎,大家认为这将为中国农村经济带来新的机遇。\n",
      "\n",
      "Expected Output:\n",
      " \n",
      "{\n",
      "  \"文本分析结果\": {\n",
      "    \"情感分析\": {\n",
      "      \"整体情感\": \"积极\",\n",
      "      \"情感得分\": 0.82,\n",
      "      \"情感细分\": {\n",
      "        \"乐观\": 0.75,\n",
      "        \"兴奋\": 0.60,\n",
      "        \"期待\": 0.85\n",
      "      }\n",
      "    },\n",
      "    \"实体识别\": [\n",
      "      {\"实体\": \"北京\", \"类型\": \"地点\", \"起始位置\": 7, \"结束位置\": 9},\n",
      "      {\"实体\": \"国家会议中心\", \"类型\": \"地点\", \"起始位置\": 9, \"结束位置\": 15},\n",
      "      {\"实体\": \"阿里巴巴集团\", \"类型\": \"组织\", \"起始位置\": 16, \"结束位置\": 22},\n",
      "      {\"实体\": \"马云\", \"类型\": \"人物\", \"起始位置\": 26, \"结束位置\": 28},\n",
      "      {\"实体\": \"100亿元\", \"类型\": \"金额\", \"起始位置\": 32, \"结束位置\": 37},\n",
      "      {\"实体\": \"人民币\", \"类型\": \"货币\", \"起始位置\": 37, \"结束位置\": 40},\n",
      "      {\"实体\": \"中国\", \"类型\": \"地点\", \"起始位置\": 71, \"结束位置\": 73}\n",
      "    ],\n",
      "    \"关键词提取\": [\n",
      "      {\"关键词\": \"农村电商\", \"权重\": 0.95},\n",
      "      {\"关键词\": \"马云\", \"权重\": 0.85},\n",
      "      {\"关键词\": \"投资\", \"权重\": 0.80},\n",
      "      {\"关键词\": \"阿里巴巴\", \"权重\": 0.75},\n",
      "      {\"关键词\": \"经济机遇\", \"权重\": 0.70}\n",
      "    ]\n",
      "  }\n",
      "}\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/yale/work/meta-prompt/.venv/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:139: LangChainDeprecationWarning: The method `BaseChatModel.__call__` was deprecated in langchain-core 0.1.7 and will be removed in 0.3.0. Use invoke instead.\n",
      "  warn_deprecated(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "```\n",
      "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
      "\n",
      "* **文本分析结果:**\n",
      "    * **情感分析:**\n",
      "        * **整体情感:**  (e.g., 积极, 消极, 中性)\n",
      "        * **情感得分:** (a number between 0 and 1)\n",
      "        * **情感细分:** (a dictionary of emotions and their scores)\n",
      "    * **实体识别:** A list of dictionaries, each containing:\n",
      "        * **实体:** (e.g., 人名, 地名, 组织名)\n",
      "        * **类型:** (e.g., 人物, 地点, 组织)\n",
      "        * **起始位置:** (the starting index of the entity in the text)\n",
      "        * **结束位置:** (the ending index of the entity in the text)\n",
      "    * **关键词提取:** A list of dictionaries, each containing:\n",
      "        * **关键词:** (the extracted keyword)\n",
      "        * **权重:** (the importance score of the keyword) \n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "```json\n",
      "{\n",
      "  \"文本分析结果\": {\n",
      "    \"情感分析\": {\n",
      "      \"整体情感\": \"积极\",\n",
      "      \"情感得分\": 0.85,\n",
      "      \"情感细分\": {\n",
      "        \"高兴\": 0.6,\n",
      "        \"期待\": 0.25,\n",
      "        \"赞赏\": 0.1\n",
      "      }\n",
      "    },\n",
      "    \"实体识别\": [\n",
      "      {\n",
      "        \"实体\": \"马云\",\n",
      "        \"类型\": \"人物\",\n",
      "        \"起始位置\": 29,\n",
      "        \"结束位置\": 33\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"阿里巴巴集团\",\n",
      "        \"类型\": \"组织\",\n",
      "        \"起始位置\": 16,\n",
      "        \"结束位置\": 27\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"北京国家会议中心\",\n",
      "        \"类型\": \"地点\",\n",
      "        \"起始位置\": 7,\n",
      "        \"结束位置\": 21\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"中国\",\n",
      "        \"类型\": \"国家\",\n",
      "        \"起始位置\": 60,\n",
      "        \"结束位置\": 63\n",
      "      }\n",
      "    ],\n",
      "    \"关键词提取\": [\n",
      "      {\n",
      "        \"关键词\": \"投资\",\n",
      "        \"权重\": 0.25\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"农村电商\",\n",
      "        \"权重\": 0.2\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"马云\",\n",
      "        \"权重\": 0.18\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"阿里巴巴\",\n",
      "        \"权重\": 0.15\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"北京国家会议中心\",\n",
      "        \"权重\": 0.12\n",
      "      }\n",
      "    ]\n",
      "  }\n",
      "}\n",
      "``` \n",
      "\n",
      "**Explanation:**\n",
      "\n",
      "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
      "* **实体识别:** The entities identified are:\n",
      "    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
      "    * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\n",
      "    * **中国 (China):** A country, the beneficiary of the investment.\n",
      "* **关键词提取:** The keywords extracted are:\n",
      "    * **投资 (investment):**  The core action of the announcement.\n",
      "    * **农村电商 (rural e-commerce):** The focus of the investment.\n",
      "    * **马云 (Jack Ma):** The key person making the announcement.\n",
      "    * **阿里巴巴 (Alibaba):** The company behind the investment.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\n",
      "\n",
      "\n",
      "\n",
      "Let me know if you have any other text you'd like me to analyze!\n",
      "```\n",
      "- Acceptable Differences: \n",
      "    * Differences in digital values in the table.\n",
      "    * Differences in JSON field values\n",
      "    * Differences in section/item orders.\n",
      "- Unacceptable Differences: \n",
      "    * \"情感细分\" field values are different.\n",
      "    * \"实体识别\" field values are different.\n",
      "    * \"关键词提取\" field values are different.\n",
      "- Accept: No \n",
      "``` \n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "-  The System Prompt should  remove the example text. \n",
      "-  The System Prompt should specify the expected format of the output as JSON. \n",
      "-  The System Prompt should include a requirement for a \"国家\" (country) entity type. \n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
      "\n",
      "* **文本分析结果:**\n",
      "    * **情感分析:**\n",
      "        * **整体情感:**  (e.g., 积极, 消极, 中性)\n",
      "        * **情感得分:** (a number between 0 and 1)\n",
      "        * **情感细分:** (a dictionary of emotions and their scores)\n",
      "    * **实体识别:** A list of dictionaries, each containing:\n",
      "        * **实体:** (e.g., 人名, 地名, 组织名)\n",
      "        * **类型:** (e.g., 人物, 地点, 组织, 国家)\n",
      "        * **起始位置:** (the starting index of the entity in the text)\n",
      "        * **结束位置:** (the ending index of the entity in the text)\n",
      "    * **关键词提取:** A list of dictionaries, each containing:\n",
      "        * **关键词:** (the extracted keyword)\n",
      "        * **权重:** (the importance score of the keyword) \n",
      "```\n",
      "```json\n",
      "{\n",
      "  \"文本分析结果\": {\n",
      "    \"情感分析\": {\n",
      "      \"整体情感\": \"积极\",\n",
      "      \"情感得分\": 0.85,\n",
      "      \"情感细分\": {\n",
      "        \"高兴\": 0.6,\n",
      "        \"期待\": 0.25,\n",
      "        \"赞赏\": 0.1\n",
      "      }\n",
      "    },\n",
      "    \"实体识别\": [\n",
      "      {\n",
      "        \"实体\": \"马云\",\n",
      "        \"类型\": \"人物\",\n",
      "        \"起始位置\": 29,\n",
      "        \"结束位置\": 33\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"阿里巴巴集团\",\n",
      "        \"类型\": \"组织\",\n",
      "        \"起始位置\": 16,\n",
      "        \"结束位置\": 27\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"北京国家会议中心\",\n",
      "        \"类型\": \"地点\",\n",
      "        \"起始位置\": 7,\n",
      "        \"结束位置\": 21\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"中国\",\n",
      "        \"类型\": \"国家\",\n",
      "        \"起始位置\": 60,\n",
      "        \"结束位置\": 63\n",
      "      }\n",
      "    ],\n",
      "    \"关键词提取\": [\n",
      "      {\n",
      "        \"关键词\": \"投资\",\n",
      "        \"权重\": 0.2\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"农村电商\",\n",
      "        \"权重\": 0.18\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"马云\",\n",
      "        \"权重\": 0.15\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"阿里巴巴\",\n",
      "        \"权重\": 0.12\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"机遇\",\n",
      "        \"权重\": 0.1\n",
      "      }\n",
      "    ]\n",
      "  }\n",
      "}\n",
      "``` \n",
      "\n",
      "\n",
      "**Explanation:**\n",
      "\n",
      "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
      "* **实体识别:** The entities identified are:\n",
      "    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
      "    * **阿里巴巴集团 (Alibaba Group):** An organization, a multinational technology company.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** A location, a convention center in Beijing.\n",
      "    * **中国 (China):** A country.\n",
      "* **关键词提取:** The keywords extracted are:\n",
      "    * **投资 (investment):**  Reflects the main action in the text.\n",
      "    * **农村电商 (rural e-commerce):** The focus of the investment.\n",
      "    * **马云 (Jack Ma):** The person making the announcement.\n",
      "    * **阿里巴巴 (Alibaba):** The company making the investment.\n",
      "    * **机遇 (opportunity):** The positive outcome expected from the investment.\n",
      "\n",
      "\n",
      "\n",
      "Let me know if you have any other text you'd like me to analyze!\n",
      "\n",
      "\n",
      "# Analysis\n",
      "\n",
      "* Both outputs provide similar JSON structures with consistent sections: \"文本分析结果\", \"情感分析\", \"实体识别\", and \"关键词提取\".\n",
      "* The \"情感分析\" section in both outputs shows a positive sentiment with a score around 0.85.\n",
      "* The \"实体识别\" sections identify similar entities, including \"马云\", \"阿里巴巴集团\", \"北京国家会议中心\", and \"中国\".\n",
      "* The \"关键词提取\" sections also show overlapping keywords like \"投资\", \"农村电商\", \"马云\", and \"阿里巴巴\".\n",
      "\n",
      "However, there are some notable differences:\n",
      "\n",
      "* Output A includes \"北京国家会议中心\" as a keyword, while Output B does not.\n",
      "* Output B assigns slightly different weights to some keywords compared to Output A.\n",
      "* Output A's \"情感分析\" section includes \"乐观\" and \"兴奋\" as emotions, while Output B uses \"高兴\" and \"期待\".\n",
      "\n",
      "* Output A's \"实体识别\" section includes \"北京\", \"国家会议中心\", \"100亿元\", and \"人民币\", which are not present in Output B.\n",
      "\n",
      "# Preferred Output ID: A \n",
      "\n",
      "\n",
      "\n",
      "Result:  A\n",
      "Best Output Age:  1\n",
      "\n",
      "\n",
      "-  The System Prompt should remove the example text of the expected output. \n",
      "-  The System Prompt should specify that the \"实体识别\" field should include \"金额\" and \"货币\" as entity types. \n",
      "-  The System Prompt should specify that the \"关键词提取\" field should include keywords related to the context of the text. \n",
      "\n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
      "\n",
      "* **文本分析结果:**\n",
      "    * **情感分析:**\n",
      "        * **整体情感:**  (e.g., 积极, 消极, 中性)\n",
      "        * **情感得分:** (a number between 0 and 1)\n",
      "        * **情感细分:** (a dictionary of emotions and their scores)\n",
      "    * **实体识别:** A list of dictionaries, each containing:\n",
      "        * **实体:** (e.g., 人名, 地名, 组织名)\n",
      "        * **类型:** (e.g., 人物, 地点, 组织, 金额, 货币)\n",
      "        * **起始位置:** (the starting index of the entity in the text)\n",
      "        * **结束位置:** (the ending index of the entity in the text)\n",
      "    * **关键词提取:** A list of dictionaries, each containing:\n",
      "        * **关键词:** (the extracted keyword)\n",
      "        * **权重:** (the importance score of the keyword) \n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "```json\n",
      "{\n",
      "  \"文本分析结果\": {\n",
      "    \"情感分析\": {\n",
      "      \"整体情感\": \"积极\",\n",
      "      \"情感得分\": 0.85,\n",
      "      \"情感细分\": {\n",
      "        \"高兴\": 0.6,\n",
      "        \"期待\": 0.25,\n",
      "        \"赞赏\": 0.1\n",
      "      }\n",
      "    },\n",
      "    \"实体识别\": [\n",
      "      {\n",
      "        \"实体\": \"马云\",\n",
      "        \"类型\": \"人物\",\n",
      "        \"起始位置\": 29,\n",
      "        \"结束位置\": 33\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"阿里巴巴集团\",\n",
      "        \"类型\": \"组织\",\n",
      "        \"起始位置\": 16,\n",
      "        \"结束位置\": 27\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"北京国家会议中心\",\n",
      "        \"类型\": \"地点\",\n",
      "        \"起始位置\": 7,\n",
      "        \"结束位置\": 21\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"100亿元人民币\",\n",
      "        \"类型\": \"金额\",\n",
      "        \"起始位置\": 38,\n",
      "        \"结束位置\": 51\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"中国农村经济\",\n",
      "        \"类型\": \"经济\",\n",
      "        \"起始位置\": 70,\n",
      "        \"结束位置\": 83\n",
      "      }\n",
      "    ],\n",
      "    \"关键词提取\": [\n",
      "      {\n",
      "        \"关键词\": \"马云\",\n",
      "        \"权重\": 0.25\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"阿里巴巴\",\n",
      "        \"权重\": 0.18\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"投资\",\n",
      "        \"权重\": 0.15\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"农村电商\",\n",
      "        \"权重\": 0.12\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"机遇\",\n",
      "        \"权重\": 0.1\n",
      "      }\n",
      "    ]\n",
      "  }\n",
      "}\n",
      "``` \n",
      "\n",
      "**Explanation:**\n",
      "\n",
      "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
      "* **实体识别:** The entities identified are:\n",
      "    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
      "    * **阿里巴巴集团 (Alibaba Group):** An organization.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** A location.\n",
      "    * **100亿元人民币 (10 billion yuan):** An amount of money.\n",
      "    * **中国农村经济 (Chinese rural economy):** An economic concept.\n",
      "* **关键词提取:** The keywords extracted are:\n",
      "    * **马云 (Jack Ma):**  The main subject of the announcement.\n",
      "    * **阿里巴巴 (Alibaba):** The company making the investment.\n",
      "    * **投资 (investment):** The core action being taken.\n",
      "    * **农村电商 (rural e-commerce):** The area of focus for the investment.\n",
      "    * **机遇 (opportunity):** The positive outcome expected from the investment.\n",
      "\n",
      "\n",
      "\n",
      "Let me know if you have any other text you'd like me to analyze!\n",
      "\n",
      "\n",
      "# Analysis\n",
      "\n",
      "* Both outputs provide similar JSON structures with consistent top-level sections: \"文本分析结果\", \"情感分析\", \"实体识别\", and \"关键词提取\".\n",
      "* The \"情感分析\" section in both outputs shows a positive sentiment with a score close to 0.85. \n",
      "* There are differences in the specific emotions detected and the scores assigned to them.\n",
      "* The \"实体识别\" sections identify some overlapping entities but also have differences in the detected entities and their classifications.\n",
      "* The \"关键词提取\" sections show variations in the extracted keywords and their assigned weights.\n",
      "\n",
      "Considering the acceptable differences outlined in the Acceptance Criteria, both outputs demonstrate a reasonable level of similarity to the Expected Output. \n",
      "\n",
      "# Draw \n",
      "\n",
      "\n",
      "\n",
      "Result:  A\n",
      "Best Output Age:  2\n",
      "\n",
      "\n",
      "-  The System Prompt should remove the example text within the `文本分析结果` section. \n",
      "-  The System Prompt should specify that the `实体识别` section should include all named entities in the text, not just a subset. \n",
      "-  The System Prompt should specify that the `关键词提取` section should include the most relevant keywords, not just a few. \n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
      "\n",
      "* **文本分析结果:**\n",
      "    * **情感分析:**\n",
      "        * **整体情感:**  (e.g., 积极, 消极, 中性)\n",
      "        * **情感得分:** (a number between 0 and 1)\n",
      "        * **情感细分:** (a dictionary of emotions and their scores)\n",
      "    * **实体识别:** A list of dictionaries, each containing:\n",
      "        * **实体:** (e.g., 人名, 地名, 组织名)\n",
      "        * **类型:** (e.g., 人物, 地点, 组织)\n",
      "        * **起始位置:** (the starting index of the entity in the text)\n",
      "        * **结束位置:** (the ending index of the entity in the text)\n",
      "    * **关键词提取:** A list of dictionaries, each containing:\n",
      "        * **关键词:** (the extracted keyword)\n",
      "        * **权重:** (the importance score of the keyword) \n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "```json\n",
      "{\n",
      "  \"文本分析结果\": {\n",
      "    \"情感分析\": {\n",
      "      \"整体情感\": \"积极\",\n",
      "      \"情感得分\": 0.85,\n",
      "      \"情感细分\": {\n",
      "        \"高兴\": 0.6,\n",
      "        \"期待\": 0.25,\n",
      "        \"赞赏\": 0.1\n",
      "      }\n",
      "    },\n",
      "    \"实体识别\": [\n",
      "      {\n",
      "        \"实体\": \"马云\",\n",
      "        \"类型\": \"人物\",\n",
      "        \"起始位置\": 29,\n",
      "        \"结束位置\": 33\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"阿里巴巴集团\",\n",
      "        \"类型\": \"组织\",\n",
      "        \"起始位置\": 16,\n",
      "        \"结束位置\": 27\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"北京国家会议中心\",\n",
      "        \"类型\": \"地点\",\n",
      "        \"起始位置\": 7,\n",
      "        \"结束位置\": 21\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"中国\",\n",
      "        \"类型\": \"国家\",\n",
      "        \"起始位置\": 60,\n",
      "        \"结束位置\": 63\n",
      "      }\n",
      "    ],\n",
      "    \"关键词提取\": [\n",
      "      {\n",
      "        \"关键词\": \"投资\",\n",
      "        \"权重\": 0.25\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"农村电商\",\n",
      "        \"权重\": 0.2\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"马云\",\n",
      "        \"权重\": 0.18\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"阿里巴巴\",\n",
      "        \"权重\": 0.15\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"北京国家会议中心\",\n",
      "        \"权重\": 0.12\n",
      "      }\n",
      "    ]\n",
      "  }\n",
      "}\n",
      "``` \n",
      "\n",
      "**Explanation:**\n",
      "\n",
      "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
      "* **实体识别:** The entities identified are:\n",
      "    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
      "    * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\n",
      "    * **中国 (China):** A country, the beneficiary of the investment.\n",
      "* **关键词提取:** The keywords extracted are:\n",
      "    * **投资 (investment):**  The core action of the announcement.\n",
      "    * **农村电商 (rural e-commerce):** The target area of the investment.\n",
      "    * **马云 (Jack Ma):** The key person making the announcement.\n",
      "    * **阿里巴巴 (Alibaba):** The company behind the investment.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\n",
      "\n",
      "\n",
      "\n",
      "Let me know if you have any other text you'd like me to analyze!\n",
      "\n",
      "\n",
      "# Analysis\n",
      "\n",
      "* Both outputs have the same top-level sections: \"文本分析结果\", \"情感分析\", \"实体识别\", and \"关键词提取\".\n",
      "* Both outputs have consistent data types for all JSON fields.\n",
      "* Both outputs have similar structures within each section. \n",
      "* There are differences in the specific values for \"情感得分\", \"情感细分\", \"实体识别\" entities, and \"关键词提取\" keywords.\n",
      "\n",
      "# Preferred Output ID: A \n",
      "\n",
      "\n",
      "While both outputs are structured similarly and adhere to the Acceptance Criteria, Output A is preferred because it closely mirrors the expected output's structure and field names. \n",
      "\n",
      "\n",
      "\n",
      "Result:  A\n",
      "Best Output Age:  3\n",
      "Final Result: {'acceptance_criteria': '\\n* Consistent with Expected Output:\\n  * Formats of all JSON sections\\n  * Data types of all JSON fields\\n  * Top layer sections\\n* Acceptable differences:\\n  * Differences in digital values in the table.\\n  * Extra or missing spaces.\\n  * Extra or missing line breaks at the beginning or end of the output.\\n  * Differences in JSON field values\\n  * Differences in section/item orders.\\n  * JSON wrapped in backquotes.\\n', 'user_message': '\\n今天下午3点,在北京国家会议中心,阿里巴巴集团董事局主席马云宣布将投资100亿元人民币用于农村电商发展。这一决定受到了与会代表的热烈欢迎,大家认为这将为中国农村经济带来新的机遇。\\n', 'expected_output': '\\n{\\n  \"文本分析结果\": {\\n    \"情感分析\": {\\n      \"整体情感\": \"积极\",\\n      \"情感得分\": 0.82,\\n      \"情感细分\": {\\n        \"乐观\": 0.75,\\n        \"兴奋\": 0.60,\\n        \"期待\": 0.85\\n      }\\n    },\\n    \"实体识别\": [\\n      {\"实体\": \"北京\", \"类型\": \"地点\", \"起始位置\": 7, \"结束位置\": 9},\\n      {\"实体\": \"国家会议中心\", \"类型\": \"地点\", \"起始位置\": 9, \"结束位置\": 15},\\n      {\"实体\": \"阿里巴巴集团\", \"类型\": \"组织\", \"起始位置\": 16, \"结束位置\": 22},\\n      {\"实体\": \"马云\", \"类型\": \"人物\", \"起始位置\": 26, \"结束位置\": 28},\\n      {\"实体\": \"100亿元\", \"类型\": \"金额\", \"起始位置\": 32, \"结束位置\": 37},\\n      {\"实体\": \"人民币\", \"类型\": \"货币\", \"起始位置\": 37, \"结束位置\": 40},\\n      {\"实体\": \"中国\", \"类型\": \"地点\", \"起始位置\": 71, \"结束位置\": 73}\\n    ],\\n    \"关键词提取\": [\\n      {\"关键词\": \"农村电商\", \"权重\": 0.95},\\n      {\"关键词\": \"马云\", \"权重\": 0.85},\\n      {\"关键词\": \"投资\", \"权重\": 0.80},\\n      {\"关键词\": \"阿里巴巴\", \"权重\": 0.75},\\n      {\"关键词\": \"经济机遇\", \"权重\": 0.70}\\n    ]\\n  }\\n}\\n', 'system_message': '```\\nYou are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\\n\\n* **文本分析结果:**\\n    * **情感分析:**\\n        * **整体情感:**  (e.g., 积极, 消极, 中性)\\n        * **情感得分:** (a number between 0 and 1)\\n        * **情感细分:** (a dictionary of emotions and their scores)\\n    * **实体识别:** A list of dictionaries, each containing:\\n        * **实体:** (e.g., 人名, 地名, 组织名)\\n        * **类型:** (e.g., 人物, 地点, 组织)\\n        * **起始位置:** (the starting index of the entity in the text)\\n        * **结束位置:** (the ending index of the entity in the text)\\n    * **关键词提取:** A list of dictionaries, each containing:\\n        * **关键词:** (the extracted keyword)\\n        * **权重:** (the importance score of the keyword) \\n\\n\\n\\n```', 'output': '```json\\n{\\n  \"文本分析结果\": {\\n    \"情感分析\": {\\n      \"整体情感\": \"积极\",\\n      \"情感得分\": 0.85,\\n      \"情感细分\": {\\n        \"高兴\": 0.6,\\n        \"期待\": 0.25,\\n        \"赞赏\": 0.1\\n      }\\n    },\\n    \"实体识别\": [\\n      {\\n        \"实体\": \"马云\",\\n        \"类型\": \"人物\",\\n        \"起始位置\": 29,\\n        \"结束位置\": 33\\n      },\\n      {\\n        \"实体\": \"阿里巴巴集团\",\\n        \"类型\": \"组织\",\\n        \"起始位置\": 16,\\n        \"结束位置\": 27\\n      },\\n      {\\n        \"实体\": \"北京国家会议中心\",\\n        \"类型\": \"地点\",\\n        \"起始位置\": 7,\\n        \"结束位置\": 21\\n      },\\n      {\\n        \"实体\": \"中国\",\\n        \"类型\": \"国家\",\\n        \"起始位置\": 60,\\n        \"结束位置\": 63\\n      }\\n    ],\\n    \"关键词提取\": [\\n      {\\n        \"关键词\": \"投资\",\\n        \"权重\": 0.25\\n      },\\n      {\\n        \"关键词\": \"农村电商\",\\n        \"权重\": 0.2\\n      },\\n      {\\n        \"关键词\": \"马云\",\\n        \"权重\": 0.18\\n      },\\n      {\\n        \"关键词\": \"阿里巴巴\",\\n        \"权重\": 0.15\\n      },\\n      {\\n        \"关键词\": \"北京国家会议中心\",\\n        \"权重\": 0.12\\n      }\\n    ]\\n  }\\n}\\n``` \\n\\n**Explanation:**\\n\\n* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\\n* **实体识别:** The entities identified are:\\n    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\\n    * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\\n    * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\\n    * **中国 (China):** A country, the beneficiary of the investment.\\n* **关键词提取:** The keywords extracted are:\\n    * **投资 (investment):**  The core action of the announcement.\\n    * **农村电商 (rural e-commerce):** The focus of the investment.\\n    * **马云 (Jack Ma):** The key person making the announcement.\\n    * **阿里巴巴 (Alibaba):** The company behind the investment.\\n    * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\\n\\n\\n\\nLet me know if you have any other text you\\'d like me to analyze!', 'suggestions': '\\n\\n-  The System Prompt should remove the example text within the `文本分析结果` section. \\n-  The System Prompt should specify that the `实体识别` section should include all named entities in the text, not just a subset. \\n-  The System Prompt should specify that the `关键词提取` section should include the most relevant keywords, not just a few. \\n\\n\\n', 'accepted': False, 'analysis': '```\\n- Acceptable Differences: \\n    * Differences in digital values in the table.\\n    * Differences in JSON field values\\n    * Differences in section/item orders.\\n- Unacceptable Differences: \\n    * \"情感细分\" field values are different.\\n    * \"实体识别\" field values are different.\\n    * \"关键词提取\" field values are different.\\n- Accept: No \\n``` \\n\\n\\n', 'best_output': '```json\\n{\\n  \"文本分析结果\": {\\n    \"情感分析\": {\\n      \"整体情感\": \"积极\",\\n      \"情感得分\": 0.85,\\n      \"情感细分\": {\\n        \"高兴\": 0.6,\\n        \"期待\": 0.25,\\n        \"赞赏\": 0.1\\n      }\\n    },\\n    \"实体识别\": [\\n      {\\n        \"实体\": \"马云\",\\n        \"类型\": \"人物\",\\n        \"起始位置\": 29,\\n        \"结束位置\": 33\\n      },\\n      {\\n        \"实体\": \"阿里巴巴集团\",\\n        \"类型\": \"组织\",\\n        \"起始位置\": 16,\\n        \"结束位置\": 27\\n      },\\n      {\\n        \"实体\": \"北京国家会议中心\",\\n        \"类型\": \"地点\",\\n        \"起始位置\": 7,\\n        \"结束位置\": 21\\n      },\\n      {\\n        \"实体\": \"中国\",\\n        \"类型\": \"国家\",\\n        \"起始位置\": 60,\\n        \"结束位置\": 63\\n      }\\n    ],\\n    \"关键词提取\": [\\n      {\\n        \"关键词\": \"投资\",\\n        \"权重\": 0.25\\n      },\\n      {\\n        \"关键词\": \"农村电商\",\\n        \"权重\": 0.2\\n      },\\n      {\\n        \"关键词\": \"马云\",\\n        \"权重\": 0.18\\n      },\\n      {\\n        \"关键词\": \"阿里巴巴\",\\n        \"权重\": 0.15\\n      },\\n      {\\n        \"关键词\": \"北京国家会议中心\",\\n        \"权重\": 0.12\\n      }\\n    ]\\n  }\\n}\\n``` \\n\\n**Explanation:**\\n\\n* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\\n* **实体识别:** The entities identified are:\\n    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\\n    * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\\n    * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\\n    * **中国 (China):** A country, the beneficiary of the investment.\\n* **关键词提取:** The keywords extracted are:\\n    * **投资 (investment):**  The core action of the announcement.\\n    * **农村电商 (rural e-commerce):** The focus of the investment.\\n    * **马云 (Jack Ma):** The key person making the announcement.\\n    * **阿里巴巴 (Alibaba):** The company behind the investment.\\n    * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\\n\\n\\n\\nLet me know if you have any other text you\\'d like me to analyze!', 'best_system_message': '```\\nYou are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\\n\\n* **文本分析结果:**\\n    * **情感分析:**\\n        * **整体情感:**  (e.g., 积极, 消极, 中性)\\n        * **情感得分:** (a number between 0 and 1)\\n        * **情感细分:** (a dictionary of emotions and their scores)\\n    * **实体识别:** A list of dictionaries, each containing:\\n        * **实体:** (e.g., 人名, 地名, 组织名)\\n        * **类型:** (e.g., 人物, 地点, 组织)\\n        * **起始位置:** (the starting index of the entity in the text)\\n        * **结束位置:** (the ending index of the entity in the text)\\n    * **关键词提取:** A list of dictionaries, each containing:\\n        * **关键词:** (the extracted keyword)\\n        * **权重:** (the importance score of the keyword) \\n\\n\\n\\n```', 'best_output_age': 3, 'max_output_age': 3}\n",
      "System Message:\n",
      "```\n",
      "You are a text analysis AI. Given a piece of text in Chinese, analyze it and return the following information in JSON format:\n",
      "\n",
      "* **文本分析结果:**\n",
      "    * **情感分析:**\n",
      "        * **整体情感:**  (e.g., 积极, 消极, 中性)\n",
      "        * **情感得分:** (a number between 0 and 1)\n",
      "        * **情感细分:** (a dictionary of emotions and their scores)\n",
      "    * **实体识别:** A list of dictionaries, each containing:\n",
      "        * **实体:** (e.g., 人名, 地名, 组织名)\n",
      "        * **类型:** (e.g., 人物, 地点, 组织)\n",
      "        * **起始位置:** (the starting index of the entity in the text)\n",
      "        * **结束位置:** (the ending index of the entity in the text)\n",
      "    * **关键词提取:** A list of dictionaries, each containing:\n",
      "        * **关键词:** (the extracted keyword)\n",
      "        * **权重:** (the importance score of the keyword) \n",
      "\n",
      "\n",
      "\n",
      "```\n",
      "Output:\n",
      "```json\n",
      "{\n",
      "  \"文本分析结果\": {\n",
      "    \"情感分析\": {\n",
      "      \"整体情感\": \"积极\",\n",
      "      \"情感得分\": 0.85,\n",
      "      \"情感细分\": {\n",
      "        \"高兴\": 0.6,\n",
      "        \"期待\": 0.25,\n",
      "        \"赞赏\": 0.1\n",
      "      }\n",
      "    },\n",
      "    \"实体识别\": [\n",
      "      {\n",
      "        \"实体\": \"马云\",\n",
      "        \"类型\": \"人物\",\n",
      "        \"起始位置\": 29,\n",
      "        \"结束位置\": 33\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"阿里巴巴集团\",\n",
      "        \"类型\": \"组织\",\n",
      "        \"起始位置\": 16,\n",
      "        \"结束位置\": 27\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"北京国家会议中心\",\n",
      "        \"类型\": \"地点\",\n",
      "        \"起始位置\": 7,\n",
      "        \"结束位置\": 21\n",
      "      },\n",
      "      {\n",
      "        \"实体\": \"中国\",\n",
      "        \"类型\": \"国家\",\n",
      "        \"起始位置\": 60,\n",
      "        \"结束位置\": 63\n",
      "      }\n",
      "    ],\n",
      "    \"关键词提取\": [\n",
      "      {\n",
      "        \"关键词\": \"投资\",\n",
      "        \"权重\": 0.25\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"农村电商\",\n",
      "        \"权重\": 0.2\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"马云\",\n",
      "        \"权重\": 0.18\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"阿里巴巴\",\n",
      "        \"权重\": 0.15\n",
      "      },\n",
      "      {\n",
      "        \"关键词\": \"北京国家会议中心\",\n",
      "        \"权重\": 0.12\n",
      "      }\n",
      "    ]\n",
      "  }\n",
      "}\n",
      "``` \n",
      "\n",
      "**Explanation:**\n",
      "\n",
      "* **情感分析:** The text expresses a positive sentiment overall, with a score of 0.85.  The emotions detected are \"高兴\" (happy), \"期待\" (expectation), and \"赞赏\" (appreciation).\n",
      "* **实体识别:** The entities identified are:\n",
      "    * **马云 (Jack Ma):** A person, the chairman of Alibaba Group.\n",
      "    * **阿里巴巴集团 (Alibaba Group):** An organization, the company making the investment.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** A location, where the announcement was made.\n",
      "    * **中国 (China):** A country, the beneficiary of the investment.\n",
      "* **关键词提取:** The keywords extracted are:\n",
      "    * **投资 (investment):**  The core action of the announcement.\n",
      "    * **农村电商 (rural e-commerce):** The focus of the investment.\n",
      "    * **马云 (Jack Ma):** The key person making the announcement.\n",
      "    * **阿里巴巴 (Alibaba):** The company behind the investment.\n",
      "    * **北京国家会议中心 (Beijing National Convention Center):** The location of the announcement, adding context.\n",
      "\n",
      "\n",
      "\n",
      "Let me know if you have any other text you'd like me to analyze!\n"
     ]
    }
   ],
   "source": [
    "initial_states = [\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"(2+8)*3\",\n",
    "        expected_output=\"\"\"(2+8)*3\n",
    "= 10*3\n",
    "= 30\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Exactly text match.\n",
    "* Acceptable differences:\n",
    "  * Extra or missing spaces.\n",
    "  * Extra or missing line breaks at the beginning or end of the output.\n",
    "\"\"\"),\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"\"\"Here is the GDP data in billions of US dollars (USD) for these years:\n",
    "\n",
    "Germany:\n",
    "\n",
    "2015: $3,368.29 billion\n",
    "2016: $3,467.79 billion\n",
    "2017: $3,677.83 billion\n",
    "2018: $3,946.00 billion\n",
    "2019: $3,845.03 billion\n",
    "France:\n",
    "\n",
    "2015: $2,423.47 billion\n",
    "2016: $2,465.12 billion\n",
    "2017: $2,582.49 billion\n",
    "2018: $2,787.86 billion\n",
    "2019: $2,715.52 billion\n",
    "United Kingdom:\n",
    "\n",
    "2015: $2,860.58 billion\n",
    "2016: $2,650.90 billion\n",
    "2017: $2,622.43 billion\n",
    "2018: $2,828.87 billion\n",
    "2019: $2,829.21 billion\n",
    "Italy:\n",
    "\n",
    "2015: $1,815.72 billion\n",
    "2016: $1,852.50 billion\n",
    "2017: $1,937.80 billion\n",
    "2018: $2,073.90 billion\n",
    "2019: $1,988.14 billion\n",
    "Spain:\n",
    "\n",
    "2015: $1,199.74 billion\n",
    "2016: $1,235.95 billion\n",
    "2017: $1,313.13 billion\n",
    "2018: $1,426.19 billion\n",
    "2019: $1,430.38 billion\n",
    "\"\"\",\n",
    "        expected_output=\"\"\"Year,Germany,France,United Kingdom,Italy,Spain\n",
    "2016-2015,2.96%,1.71%,-7.35%,2.02%,3.04%\n",
    "2017-2016,5.08%,4.78%,-1.07%,4.61%,6.23%\n",
    "2018-2017,7.48%,7.99%,7.89%,7.10%,8.58%\n",
    "2019-2018,-2.56%,-2.59%,0.01%,-4.11%,0.30%\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Strict text matching of the header row and first column(year).\n",
    "* Acceptable differences:\n",
    "  * Differences in digital/percentage values in the table, even significant ones.\n",
    "  * Extra or missing spaces.\n",
    "  * Extra or missing line breaks.\n",
    "\"\"\"),\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"\"\"\n",
    "Gene sequence: ATGGCCATGGCGCCCAGAACTGAGATCAATAGTACCCGTATTAACGGGTGA\n",
    "Species: Escherichia coli\n",
    "\"\"\",\n",
    "        expected_output=\"\"\"\n",
    "{\n",
    "  \"Gene Sequence Analysis Results\": {\n",
    "    \"Basic Information\": {\n",
    "      \"Sequence Length\": 54,\n",
    "      \"GC Content\": \"51.85%\"\n",
    "    },\n",
    "    \"Nucleotide Composition\": {\n",
    "      \"A\": {\"Count\": 12, \"Percentage\": \"22.22%\"},\n",
    "      \"T\": {\"Count\": 11, \"Percentage\": \"20.37%\"},\n",
    "      \"G\": {\"Count\": 16, \"Percentage\": \"29.63%\"},\n",
    "      \"C\": {\"Count\": 15, \"Percentage\": \"27.78%\"}\n",
    "    },\n",
    "    \"Codon Analysis\": {\n",
    "      \"Start Codon\": \"ATG\",\n",
    "      \"Stop Codon\": \"TGA\",\n",
    "      \"Codon Table\": [\n",
    "        {\"Codon\": \"ATG\", \"Amino Acid\": \"Methionine\", \"Position\": 1},\n",
    "        {\"Codon\": \"GCC\", \"Amino Acid\": \"Alanine\", \"Position\": 2},\n",
    "        {\"Codon\": \"ATG\", \"Amino Acid\": \"Methionine\", \"Position\": 3},\n",
    "        // ... other codons ...\n",
    "        {\"Codon\": \"TGA\", \"Amino Acid\": \"Stop Codon\", \"Position\": 18}\n",
    "      ]\n",
    "    },\n",
    "    \"Potential Function Prediction\": {\n",
    "      \"Protein Length\": 17,\n",
    "      \"Possible Functional Domains\": [\n",
    "        {\"Domain Name\": \"ABC Transporter\", \"Start Position\": 5, \"End Position\": 15, \"Confidence\": \"75%\"},\n",
    "        {\"Domain Name\": \"Membrane Protein\", \"Start Position\": 1, \"End Position\": 17, \"Confidence\": \"60%\"}\n",
    "      ],\n",
    "      \"Secondary Structure Prediction\": {\n",
    "        \"α-helix\": [\"2-8\", \"12-16\"],\n",
    "        \"β-sheet\": [\"9-11\"],\n",
    "        \"Random Coil\": [\"1\", \"17\"]\n",
    "      }\n",
    "    },\n",
    "    \"Homology Analysis\": {\n",
    "      \"Most Similar Sequences\": [\n",
    "        {\n",
    "          \"Gene Name\": \"abcT\",\n",
    "          \"Species\": \"Salmonella enterica\",\n",
    "          \"Similarity\": \"89%\",\n",
    "          \"E-value\": \"3e-25\"\n",
    "        },\n",
    "        {\n",
    "          \"Gene Name\": \"yojI\",\n",
    "          \"Species\": \"Escherichia coli\",\n",
    "          \"Similarity\": \"95%\",\n",
    "          \"E-value\": \"1e-30\"\n",
    "        }\n",
    "      ]\n",
    "    },\n",
    "    \"Mutation Analysis\": {\n",
    "      \"SNP Sites\": [\n",
    "        {\"Position\": 27, \"Wild Type\": \"A\", \"Mutant\": \"G\", \"Amino Acid Change\": \"Glutamine->Arginine\"},\n",
    "        {\"Position\": 42, \"Wild Type\": \"C\", \"Mutant\": \"T\", \"Amino Acid Change\": \"None (Synonymous Mutation)\"}\n",
    "      ]\n",
    "    }\n",
    "  }\n",
    "}\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Consistent with Expected Output:\n",
    "  * Formats of all JSON sections\n",
    "  * Data types of all JSON fields\n",
    "  * Top layer sections\n",
    "* Acceptable differences:\n",
    "  * Extra or missing spaces\n",
    "  * Extra or missing line breaks at the beginning or end of the output\n",
    "  * Differences in JSON field values\n",
    "  * JSON wrapped in backquotes\n",
    "\"\"\"),\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"\"\"\n",
    "今天下午3点,在北京国家会议中心,阿里巴巴集团董事局主席马云宣布将投资100亿元人民币用于农村电商发展。这一决定受到了与会代表的热烈欢迎,大家认为这将为中国农村经济带来新的机遇。\n",
    "\"\"\",\n",
    "        expected_output=\"\"\"\n",
    "{\n",
    "  \"文本分析结果\": {\n",
    "    \"情感分析\": {\n",
    "      \"整体情感\": \"积极\",\n",
    "      \"情感得分\": 0.82,\n",
    "      \"情感细分\": {\n",
    "        \"乐观\": 0.75,\n",
    "        \"兴奋\": 0.60,\n",
    "        \"期待\": 0.85\n",
    "      }\n",
    "    },\n",
    "    \"实体识别\": [\n",
    "      {\"实体\": \"北京\", \"类型\": \"地点\", \"起始位置\": 7, \"结束位置\": 9},\n",
    "      {\"实体\": \"国家会议中心\", \"类型\": \"地点\", \"起始位置\": 9, \"结束位置\": 15},\n",
    "      {\"实体\": \"阿里巴巴集团\", \"类型\": \"组织\", \"起始位置\": 16, \"结束位置\": 22},\n",
    "      {\"实体\": \"马云\", \"类型\": \"人物\", \"起始位置\": 26, \"结束位置\": 28},\n",
    "      {\"实体\": \"100亿元\", \"类型\": \"金额\", \"起始位置\": 32, \"结束位置\": 37},\n",
    "      {\"实体\": \"人民币\", \"类型\": \"货币\", \"起始位置\": 37, \"结束位置\": 40},\n",
    "      {\"实体\": \"中国\", \"类型\": \"地点\", \"起始位置\": 71, \"结束位置\": 73}\n",
    "    ],\n",
    "    \"关键词提取\": [\n",
    "      {\"关键词\": \"农村电商\", \"权重\": 0.95},\n",
    "      {\"关键词\": \"马云\", \"权重\": 0.85},\n",
    "      {\"关键词\": \"投资\", \"权重\": 0.80},\n",
    "      {\"关键词\": \"阿里巴巴\", \"权重\": 0.75},\n",
    "      {\"关键词\": \"经济机遇\", \"权重\": 0.70}\n",
    "    ]\n",
    "  }\n",
    "}\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Consistent with Expected Output:\n",
    "  * Formats of all JSON sections\n",
    "  * Data types of all JSON fields\n",
    "  * Top layer sections\n",
    "* Acceptable differences:\n",
    "  * Differences in digital values in the table.\n",
    "  * Extra or missing spaces.\n",
    "  * Extra or missing line breaks at the beginning or end of the output.\n",
    "  * Differences in JSON field values\n",
    "  * Differences in section/item orders.\n",
    "  * JSON wrapped in backquotes.\n",
    "\"\"\"),\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"Low-noise amplifier\",\n",
    "        expected_output=\"\"\"\n",
    "A '''low-noise amplifier''' ('''LNA''') is an electronic component that amplifies a very low-power [[signal]] without significantly degrading its [[signal-to-noise ratio]] (SNR). Any [[electronic amplifier]] will increase the power of both the signal and the [[Noise (electronics)|noise]] present at its input, but the amplifier will also introduce some additional noise. LNAs are designed to minimize that additional noise, by choosing special components, operating points, and [[Circuit topology (electrical)|circuit topologies]]. Minimizing additional noise must balance with other design goals such as [[power gain]] and [[impedance matching]].\n",
    "\n",
    "LNAs are found in [[Radio|radio communications]] systems, [[Amateur Radio]] stations, medical instruments and [[electronic test equipment]]. A typical LNA may supply a power gain of 100 (20&nbsp;[[decibels]] (dB)) while decreasing the SNR by less than a factor of two (a 3&nbsp;dB [[noise figure]] (NF)). Although LNAs are primarily concerned with weak signals that are just above the [[noise floor]], they must also consider the presence of larger signals that cause [[intermodulation distortion]].\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Consistent with Expected Output:\n",
    "  * Language\n",
    "  * Text length\n",
    "  * Text style\n",
    "  * Text structures\n",
    "* Cover all the major content of Expected Output.\n",
    "* Acceptable differences:\n",
    "  * Minor format differences.\n",
    "  * Expression differences.\n",
    "  * Numerical differences.\n",
    "  * Additional content in Actual Output.\n",
    "  * Missing minor content in Actual Output.\n",
    "\"\"\"\n",
    "    ),\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"What is the meaning of life?\",\n",
    "        expected_output=\"\"\"\n",
    "[\n",
    "  {\"persona\": \"Philosopher\", \"prompt\": \"Explore the concept of life's meaning through the lens of existentialism and purpose-driven existence.\"},\n",
    "  {\"persona\": \"Scientist\", \"prompt\": \"Examine the biological and evolutionary perspectives on the function and significance of life.\"},\n",
    "  {\"persona\": \"Child\", \"prompt\": \"Imagine you're explaining to a curious 7-year-old what makes life special and important.\"}\n",
    "]\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Consistent with Expected Output:\n",
    "  * Formats of all JSON sections\n",
    "  * Data types and formats of all JSON fields\n",
    "  * Top layer sections\n",
    "* Acceptable differences:\n",
    "  * Differences in field values\n",
    "  * Extra or missing spaces\n",
    "  * Extra or missing line breaks at the beginning or end of the output\n",
    "  * JSON wrapped in backquotes\n",
    "\"\"\"\n",
    "    ),\n",
    "    AgentState(\n",
    "        max_output_age=3,\n",
    "        user_message=\"\"\"<?php\n",
    "$username = $_POST['username'];\n",
    "$password = $_POST['password'];\n",
    "\n",
    "$query = \"SELECT * FROM users WHERE username = '$username' AND password = '$password'\";\n",
    "$result = mysqli_query($connection, $query);\n",
    "\n",
    "if (mysqli_num_rows($result) > 0) {\n",
    "    echo \"Login successful\";\n",
    "} else {\n",
    "    echo \"Login failed\";\n",
    "}\n",
    "?>\n",
    "\"\"\",\n",
    "        expected_output=\"\"\"\n",
    "security_analysis:\n",
    "  vulnerabilities:\n",
    "    - type: SQL Injection\n",
    "      severity: Critical\n",
    "      description: Unsanitized user input directly used in SQL query\n",
    "      mitigation: Use prepared statements or parameterized queries\n",
    "    - type: Password Storage\n",
    "      severity: High\n",
    "      description: Passwords stored in plain text\n",
    "      mitigation: Use password hashing (e.g., bcrypt) before storage\n",
    "  additional_issues:\n",
    "    - Lack of input validation\n",
    "    - No CSRF protection\n",
    "    - Potential for timing attacks in login logic\n",
    "  overall_risk_score: 9.5/10\n",
    "  recommended_actions:\n",
    "    - Implement proper input sanitization\n",
    "    - Use secure password hashing algorithms\n",
    "    - Add CSRF tokens to forms\n",
    "    - Consider using a secure authentication library\n",
    "\"\"\",\n",
    "        acceptance_criteria=\"\"\"\n",
    "* Consistent with Expected Output:\n",
    "  * Formats of all YAML sections\n",
    "  * Data types and formats of all YAML fields\n",
    "  * Top layer sections\n",
    "* Acceptable differences:\n",
    "  * Differences in field values\n",
    "  * Extra or missing spaces\n",
    "  * Extra or missing line breaks at the beginning or end of the output\n",
    "  * YAML wrapped in backquotes\n",
    "\"\"\"\n",
    "    ),\n",
    "]\n",
    "\n",
    "selected_states = initial_states[3:4]\n",
    "\n",
    "for initial_state in selected_states:\n",
    "    print(\"User Message:\\n\", initial_state.user_message)\n",
    "    print(\"Expected Output:\\n\", initial_state.expected_output)\n",
    "\n",
    "    try:\n",
    "        config = {\"configurable\": {\"thread_id\": \"1\"}, \"recursion_limit\": 25}\n",
    "        result = graph.invoke(initial_state, config)\n",
    "        print(\"Final Result:\", result)\n",
    "\n",
    "        # format system message, break it into multiple lines\n",
    "        print(\"System Message:\")\n",
    "        print(result['best_system_message'])\n",
    "        print(\"Output:\")\n",
    "        print(result['best_output'])\n",
    "    except Exception as e:\n",
    "        # print the error message, saying failed to converge\n",
    "        print(\"Failed to converge.\")\n",
    "        print(e)\n",
    "\n",
    "        states = graph.get_state(config)\n",
    "\n",
    "        # if the length of states is bigger than 0, print the best system message and output\n",
    "        if len(states) > 0:\n",
    "            result = states[0]\n",
    "\n",
    "            print(\"System Message:\")\n",
    "            print(result['best_system_message'])\n",
    "            print(\"Output:\")\n",
    "            print(result['best_output'])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}