Spaces:
Running
Running
File size: 28,109 Bytes
bd26b8c 42d1daf bd26b8c 68c6b73 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c 42d1daf bd26b8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
"""
MIT License
Copyright (c) 2023 Yale Huang
Email: [email protected]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
"""
import re
import gradio as gr
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from demo.default_meta_prompts import *
gpt_models_not_legacy = [
"gpt-4",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0613",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-instruct",
"gpt-3.5-turbo-0613"
]
gpt_models_legacy = [
"gpt-3.5-turbo-instruct",
"gpt-3.5-turbo-0301",
"text-davinci-003",
"text-davinci-002",
"code-davinci-002"
]
DEFAULT_MODEL_FOR_GENERATING="gpt-4"
DEFAULT_MODEL_FOR_TESTING="gpt-3.5-turbo"
DEFAULT_MODEL_FOR_OUTPUT_EVALUATING="gpt-3.5-turbo-instruct"
DEFAULT_CURRENT_SYSTEM_PROMPT = ''
DEFAULT_OUTPUT_EVALUATING_PROMPT = 'Find out which is more similar to string S, A or B? Print nothing if there\'s no significant difference between A and B. Else, print the result (letter A or B) only. Do nothing else.'
class PromptUI:
def __init__(self, advanced_mode = False, enable_other_user_prompts = False):
self.advanced_mode = advanced_mode
self.enable_other_user_prompts = enable_other_user_prompts
self.ui = self.init_ui()
def init_ui(self):
with gr.Blocks() as prompt_ui:
with gr.Row():
with gr.Column():
self.testing_user_prompt_textbox = gr.Textbox(
label="Testing User Prompt",
lines=10,
interactive=True,
show_copy_button=True
)
self.expect_output_textbox = gr.Textbox(
label="Expected Output",
lines=5,
interactive=True,
show_copy_button=True
)
self.other_user_prompts_checkbox = gr.Checkbox(
label="Other User Prompts",
info="Enable other user prompts in meta prompt?",
value=self.enable_other_user_prompts
)
self.other_user_prompts_textbox = gr.Textbox(
label="Other User Prompts",
lines=10,
interactive=True,
placeholder="Wrap each prompt with a pair of '```'.",
visible=self.enable_other_user_prompts,
show_copy_button=True
)
# Add gr.Number here for iterations input
self.iterations_number = gr.Number(value=1, label="Optimize Iterations", min=1, max=1000, step=1, decimals=0)
# Add button to trigger optimization here
self.optimize_btn = gr.Button(value="Optimize Prompt", variant='primary')
self.similar_candidate_textbox = gr.Textbox(label="Similarity Delta", lines=1, interactive=True)
self.compare_outputs_btn = gr.Button(value="Compare Outputs")
with gr.Column():
self.new_system_prompt_textbox = gr.Textbox(
label="New System Prompt",
lines=5,
interactive=True,
show_copy_button=True
)
self.new_output_textbox = gr.Textbox(
label="New Output",
lines=5,
interactive=True,
show_copy_button=True
)
with gr.Row():
self.run_meta_btn = gr.Button(value="↑ Single Step Optimize")
self.run_new_btn = gr.Button(value="⟳ Run New")
self.new_system_prompt_changed = gr.Checkbox(
label="New System Prompt Changed",
value=False,
interactive=False
)
with gr.Column():
self.current_system_prompt_textbox = gr.Textbox(
label="Current System Prompt",
value=DEFAULT_CURRENT_SYSTEM_PROMPT,
lines=5,
interactive=True,
show_copy_button=True
)
self.current_output_textbox = gr.Textbox(
label="Current Output",
lines=5,
interactive=True,
show_copy_button=True
)
with gr.Row():
self.accept_new_btn = gr.Button(value="→ Accept New Prompt")
self.run_current_btn = gr.Button(value="⟳ Run Current")
with gr.Row(visible=self.advanced_mode):
with gr.Column():
self.meta_system_prompt_textbox = gr.Textbox(label="Meta System Prompt",
value=DEFAULT_META_SYSTEM_PROMPT,
lines=10,
interactive=True
)
with gr.Column():
self.merged_meta_prompt_textbox = gr.Textbox(label="Merged Meta System Prompt",
lines=10,
interactive=False,
show_copy_button=True
)
self.merge_prompt_btn = gr.Button(value="Merge Meta System Prompt")
# self.chatgpt_output_textbox = gr.Textbox(label="Paste ChatGPT Output",
# lines=10,
# interactive=True
# )
# self.parse_chatgpt_output_btn = gr.Button(value="Parse ChatGPT Output")
with gr.Row(visible=self.advanced_mode):
with gr.Column():
self.llm_model_meta_dropdown = gr.Dropdown(
label="Generating LLM Model",
choices=gpt_models_not_legacy,
value=DEFAULT_MODEL_FOR_GENERATING,
interactive=True,
allow_custom_value=False
)
self.llm_model_meta_temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
interactive=True,
label="Generating LLM Model Temperature"
)
self.llm_model_meta_max_tokens_slider = gr.Slider(
minimum=256,
maximum=32000,
step=256,
value=0,
interactive=True,
label="Generating LLM Model Token Limit (0 for auto)"
)
self.llm_model_meta_request_timeout_slider = gr.Slider(
minimum=0,
maximum=600,
step=5,
value=600,
interactive=True,
label="Generating LLM Model Timeout"
)
self.llm_model_meta_max_retries_slider = gr.Slider(
minimum=0,
maximum=30,
step=1,
value=6,
interactive=True,
label="Generating LLM Model Max Retries"
)
with gr.Column():
self.llm_model_test_dropdown = gr.Dropdown(
label="Testing LLM Model",
choices=gpt_models_not_legacy,
value=DEFAULT_MODEL_FOR_TESTING,
interactive=True,
allow_custom_value=False
)
self.llm_model_test_temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
interactive=True,
label="Testing LLM Model Temperature"
)
self.llm_model_test_max_tokens_slider = gr.Slider(
minimum=256,
maximum=32000,
step=256,
value=0,
interactive=True,
label="Testing LLM Model Token Limit (0 for auto)"
)
self.llm_model_test_request_timeout_slider = gr.Slider(
minimum=0,
maximum=600,
step=5,
value=600,
interactive=True,
label="Testing LLM Model Timeout"
)
self.llm_model_test_max_retries_slider = gr.Slider(
minimum=0,
maximum=30,
step=1,
value=6,
interactive=True,
label="Testing LLM Model Max Retries"
)
# with gr.Column():
# self.llm_model_output_eval_dropdown = gr.Dropdown(label="Output Evaluating LLM Model",
# choices=gpt_models_legacy,
# value=DEFAULT_MODEL_FOR_OUTPUT_EVALUATING,
# interactive=True,
# allow_custom_value=False)
# self.llm_model_output_eval_slider = gr.Slider(minimum=0.0,
# maximum=1.0,
# step=0.01,
# default=0.0,
# label="Output Evaluating LLM Model of Temperature")
self.run_new_btn.click(
self.test_prompt,
[
self.new_system_prompt_textbox,
self.testing_user_prompt_textbox,
self.llm_model_test_dropdown,
self.llm_model_test_max_retries_slider,
self.llm_model_test_max_tokens_slider,
self.llm_model_test_request_timeout_slider,
self.llm_model_test_temperature_slider
],
[self.new_output_textbox]
)
self.run_current_btn.click(
self.test_prompt,
[
self.current_system_prompt_textbox,
self.testing_user_prompt_textbox,
self.llm_model_test_dropdown,
self.llm_model_test_max_retries_slider,
self.llm_model_test_max_tokens_slider,
self.llm_model_test_request_timeout_slider,
self.llm_model_test_temperature_slider
],
[self.current_output_textbox]
)
self.run_meta_btn.click(
self.meta_prompt,
[
self.meta_system_prompt_textbox,
self.current_system_prompt_textbox,
self.testing_user_prompt_textbox,
self.other_user_prompts_textbox,
self.expect_output_textbox,
self.current_output_textbox,
self.other_user_prompts_checkbox,
self.llm_model_meta_dropdown,
self.llm_model_meta_max_retries_slider,
self.llm_model_meta_max_tokens_slider,
self.llm_model_meta_request_timeout_slider,
self.llm_model_meta_temperature_slider
],
[self.new_system_prompt_textbox, self.new_system_prompt_changed]
)
self.accept_new_btn.click(self.copy_new_prompts,
[self.new_system_prompt_textbox, self.new_output_textbox],
[self.current_system_prompt_textbox, self.current_output_textbox])
self.compare_outputs_btn.click(self.compare_outputs,
[self.new_output_textbox, self.current_output_textbox, self.expect_output_textbox],
[self.similar_candidate_textbox])
# Attach the optimize_prompt function to the button click event.
# You should implement this function according to your optimization logic.
self.optimize_btn.click(
self.optimize_prompt,
[
self.meta_system_prompt_textbox,
self.current_system_prompt_textbox,
self.testing_user_prompt_textbox,
self.other_user_prompts_textbox,
self.expect_output_textbox,
self.current_output_textbox,
self.iterations_number,
self.other_user_prompts_checkbox,
self.llm_model_meta_dropdown,
self.llm_model_meta_max_retries_slider,
self.llm_model_meta_max_tokens_slider,
self.llm_model_meta_request_timeout_slider,
self.llm_model_meta_temperature_slider,
self.llm_model_test_dropdown,
self.llm_model_test_max_retries_slider,
self.llm_model_test_max_tokens_slider,
self.llm_model_test_request_timeout_slider,
self.llm_model_test_temperature_slider
],
[self.new_system_prompt_textbox, self.new_system_prompt_changed])
self.merge_prompt_btn.click(self.merge_meta_system_prompt,
[
self.meta_system_prompt_textbox,
self.current_system_prompt_textbox,
self.other_user_prompts_textbox,
self.testing_user_prompt_textbox,
self.expect_output_textbox,
self.current_output_textbox,
self.other_user_prompts_checkbox
],
[self.merged_meta_prompt_textbox])
self.other_user_prompts_checkbox.change(self.update_enable_other_user_prompts,
[self.other_user_prompts_checkbox],
[
self.other_user_prompts_textbox,
self.meta_system_prompt_textbox
])
return prompt_ui
def update_enable_other_user_prompts(self, new_value):
self.enable_other_user_prompts = new_value
return \
gr.Textbox.update(visible=new_value), \
gr.Textbox.update(
value = DEFAULT_META_SYSTEM_PROMPT_WITH_OTHER_PROMPTS if new_value else DEFAULT_META_SYSTEM_PROMPT
)
def merge_meta_system_prompt(
self,
meta_system_prompt,
current_system_prompt,
other_user_prompts,
testing_user_prompt,
expect_output,
current_output,
use_other_user_prompts
):
"""Merge meta and current system prompts."""
# converted_prompts = [prompt[0] for prompt in other_user_prompts.values]
user_prompt = self.generate_user_message(
current_system_prompt,
testing_user_prompt,
other_user_prompts if use_other_user_prompts else None,
expect_output,
current_output
)
merged_prompt = f"{meta_system_prompt}\n\n{user_prompt}"
return merged_prompt
def copy_new_prompts(self, system_prompt, output):
"""Copy prompts and output from new to current textboxes."""
return system_prompt, output
def test_prompt(
self,
system_prompt,
user_prompt,
model,
max_retries,
max_tokens,
request_timeout,
temperature,
):
# Create the prompt
prompt = [
SystemMessage(content=system_prompt),
HumanMessage(content=user_prompt)
]
chat_llm = ChatOpenAI(
model=model,
max_retries=max_retries,
max_tokens=None if max_tokens == 0 else max_tokens,
request_timeout=request_timeout,
temperature=temperature
)
# Get the response from OpenAI
gpt_response = chat_llm(prompt)
# Return the output to be placed in the output textbox
return gpt_response.content
def generate_user_message(self, current_system_prompt, testing_user_prompt, other_user_prompts, expect_output, current_output):
# other_prompts_formatted = '\n\n'.join([f"```\n{prompt}\n```" for prompt in other_user_prompts])
user_message = f"""
* Prompt Template
```
{current_system_prompt}
```
* User Message
```
{testing_user_prompt}
```
* Other User Messages
{other_user_prompts}
* Expected GPT Message
```
{expect_output}
```
* GPT Message
```
{current_output}
```
""" if other_user_prompts is not None else f"""
* Prompt Template
```
{current_system_prompt}
```
* User Message
```
{testing_user_prompt}
```
* Expected GPT Message
```
{expect_output}
```
* GPT Message
```
{current_output}
```
"""
return user_message
def meta_prompt(
self,
meta_system_prompt,
current_system_prompt,
testing_user_prompt,
other_user_prompts,
expect_output,
current_output,
use_user_prompts,
model,
max_retries,
max_tokens,
request_timeout,
temperature,
):
# Format the user message
user_message = self.generate_user_message(
current_system_prompt,
testing_user_prompt,
other_user_prompts if use_user_prompts else None,
expect_output,
current_output
)
# Create the prompt
prompt = [
SystemMessage(content=meta_system_prompt),
HumanMessage(content=user_message)
]
chat_llm = ChatOpenAI(
model=model,
max_retries=max_retries,
max_tokens=None if max_tokens == 0 else max_tokens,
request_timeout=request_timeout,
temperature=temperature
)
# Get the response from OpenAI
gpt_response = chat_llm(prompt)
updated_prompt = self.extract_updated_prompt(gpt_response.content)
changed = not self.detect_no_change(gpt_response.content)
# Return the output to be placed in the new system prompt textbox
if updated_prompt:
return updated_prompt, changed
else:
return gpt_response.content, changed
def extract_updated_prompt(self, gpt_response):
# Regular expression pattern to find the text enclosed
pattern = "<!-- BEGIN OF PROMPT -->(.*?)<!-- END OF PROMPT -->"
# Using search method to find the first occurrence of the pattern
result = re.search(pattern, gpt_response, re.DOTALL)
if result:
s = result.group(1).strip("\n")
if s.startswith("```") and s.endswith("```"):
s = s[3:-3]
return s # Return the matched string
else:
return None # If no such pattern is found return None
def detect_no_change(self, gpt_response):
# Regular expression pattern to find the exact string
pattern = "<!-- NO CHANGE TO PROMPT -->"
# Using search method to find the occurrence of the pattern
result = re.search(pattern, gpt_response)
if result:
return True # If the pattern is found return True
else:
return False # If no such pattern is found return False
# def compare_strings(self, a: str, b: str, s: str) -> str:
# # Create an instance of ChatOpenAI with the evaluation model
# chat_model = OpenAI(temperature=0, model_name=self.llm_model_output_eval_dropdown.value)
# # Create a prompt for comparison
# prompt = (DEFAULT_OUTPUT_EVALUATING_PROMPT +
# '\n\n' + f'# S\n\n```\n{s}\n```\n\n# A\n\n```\n{a}\n```\n\n# B\n\n```\n{b}\n```\n\n')
# # Get the response from OpenAI
# response = chat_model(prompt)
# # Remove '```' from beginning and end if it exists
# if response.startswith("```") and response.endswith("```"):
# response = response[3:-3]
# # Check the first character of the response and return accordingly
# if response.startswith('A'):
# return 'A'
# elif response.startswith('B'):
# return 'B'
# else:
# return None
def optimize_prompt(
self,
meta_system_prompt,
current_system_prompt,
testing_user_prompt,
other_user_prompts,
expect_output,
current_output,
iterations,
user_other_user_prompts,
meta_model,
meta_max_retries,
meta_max_tokens,
meta_request_timeout,
meta_temperature,
test_model,
test_max_retries,
test_max_tokens,
test_request_timeout,
test_temperature,
):
changed = False
# Iterate the specified number of times
for i in range(int(iterations)):
# If current_output is None or not provided, get it from test_prompt
if current_output is None:
current_output = self.test_prompt(
current_system_prompt,
testing_user_prompt,
test_model,
test_max_retries,
test_max_tokens,
test_request_timeout,
test_temperature,
)
# Call meta_prompt to get an optimized prompt
new_prompt, changed = self.meta_prompt(
meta_system_prompt,
current_system_prompt,
testing_user_prompt,
other_user_prompts,
expect_output,
current_output,
user_other_user_prompts,
meta_model,
meta_max_retries,
meta_max_tokens,
meta_request_timeout,
meta_temperature,
)
# If changed is False, break the loop
if not changed:
break
# If there is an updated prompt and it's different from the current one, update current_system_prompt
if new_prompt and new_prompt != current_system_prompt:
current_system_prompt = new_prompt
# Reset current_output to None so it gets recalculated in the next iteration
current_output = None
return current_system_prompt, changed # Return the optimized system prompt
def compare_strings(self, alpha: str, beta: str, expected: str) -> str:
# If both ALPHA and BETA are empty, return None
if not alpha and not beta:
return None
# If either ALPHA or BETA is empty, the non-empty string should be considered more similar to EXPECTED
if not alpha:
return 'B'
if not beta:
return 'A'
# If both ALPHA and BETA are identical, return None
if alpha == beta:
return None
# Create the CountVectorizer instance
vectorizer = CountVectorizer().fit_transform([alpha, beta, expected])
vectors = vectorizer.toarray()
# Calculate cosine similarities
alpha_sim = cosine_similarity(vectors[0].reshape(1, -1), vectors[2].reshape(1, -1))
beta_sim = cosine_similarity(vectors[1].reshape(1, -1), vectors[2].reshape(1, -1))
# Compare similarities and return the string that is more similar to the expected string
if alpha_sim > beta_sim:
return 'A'
elif beta_sim > alpha_sim:
return 'B'
else:
return None
def delta_similarities(self, alpha: str, beta: str, expected: str) -> float:
# If both ALPHA and BETA are empty, return 0
if not alpha and not beta:
return 0.0
# If either ALPHA or BETA is empty, the non-empty string should be considered more similar to EXPECTED
if not alpha:
return -1.0
if not beta:
return 1.0
# If both ALPHA and BETA are identical, return 0
if alpha == beta:
return 0.0
# Create the CountVectorizer instance
vectorizer = CountVectorizer().fit_transform([alpha, beta, expected])
vectors = vectorizer.toarray()
# Calculate cosine similarities
alpha_sim = cosine_similarity(vectors[0].reshape(1, -1), vectors[2].reshape(1, -1))
beta_sim = cosine_similarity(vectors[1].reshape(1, -1), vectors[2].reshape(1, -1))
# Return the difference in similarities
return alpha_sim[0][0] - beta_sim[0][0]
def compare_outputs(self, new_output, current_output, expected_output):
# Compare new output and current output against expected output
# result = self.compare_strings(new_output, current_output, expected_output)
result = self.delta_similarities(new_output, current_output, expected_output)
return result
|