|
# Anime Video Models |
|
|
|
:white_check_mark: We add small models that are optimized for anime videos :-)<br> |
|
More comparisons can be found in [anime_comparisons.md](anime_comparisons.md) |
|
|
|
- [How to Use](#how-to-use) |
|
- [PyTorch Inference](#pytorch-inference) |
|
- [ncnn Executable File](#ncnn-executable-file) |
|
- [Step 1: Use ffmpeg to extract frames from video](#step-1-use-ffmpeg-to-extract-frames-from-video) |
|
- [Step 2: Inference with Real-ESRGAN executable file](#step-2-inference-with-real-esrgan-executable-file) |
|
- [Step 3: Merge the enhanced frames back into a video](#step-3-merge-the-enhanced-frames-back-into-a-video) |
|
- [More Demos](#more-demos) |
|
|
|
| Models | Scale | Description | |
|
| ---------------------------------------------------------------------------------------------------------------------------------- | :---- | :----------------------------- | |
|
| [realesr-animevideov3](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth) | X4 <sup>1</sup> | Anime video model with XS size | |
|
|
|
Note: <br> |
|
<sup>1</sup> This model can also be used for X1, X2, X3. |
|
|
|
--- |
|
|
|
The following are some demos (best view in the full screen mode). |
|
|
|
<https://user-images.githubusercontent.com/17445847/145706977-98bc64a4-af27-481c-8abe-c475e15db7ff.MP4> |
|
|
|
<https://user-images.githubusercontent.com/17445847/145707055-6a4b79cb-3d9d-477f-8610-c6be43797133.MP4> |
|
|
|
<https://user-images.githubusercontent.com/17445847/145783523-f4553729-9f03-44a8-a7cc-782aadf67b50.MP4> |
|
|
|
## How to Use |
|
|
|
### PyTorch Inference |
|
|
|
```bash |
|
# download model |
|
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P weights |
|
# single gpu and single process inference |
|
CUDA_VISIBLE_DEVICES=0 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 |
|
# single gpu and multi process inference (you can use multi-processing to improve GPU utilization) |
|
CUDA_VISIBLE_DEVICES=0 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --num_process_per_gpu 2 |
|
# multi gpu and multi process inference |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --num_process_per_gpu 2 |
|
``` |
|
|
|
```console |
|
Usage: |
|
--num_process_per_gpu The total number of process is num_gpu * num_process_per_gpu. The bottleneck of |
|
the program lies on the IO, so the GPUs are usually not fully utilized. To alleviate |
|
this issue, you can use multi-processing by setting this parameter. As long as it |
|
does not exceed the CUDA memory |
|
--extract_frame_first If you encounter ffmpeg error when using multi-processing, you can turn this option on. |
|
``` |
|
|
|
### NCNN Executable File |
|
|
|
#### Step 1: Use ffmpeg to extract frames from video |
|
|
|
```bash |
|
ffmpeg -i onepiece_demo.mp4 -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 tmp_frames/frame%08d.png |
|
``` |
|
|
|
- Remember to create the folder `tmp_frames` ahead |
|
|
|
#### Step 2: Inference with Real-ESRGAN executable file |
|
|
|
1. Download the latest portable [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip) **executable files for Intel/AMD/Nvidia GPU** |
|
|
|
1. Taking the Windows as example, run: |
|
|
|
```bash |
|
./realesrgan-ncnn-vulkan.exe -i tmp_frames -o out_frames -n realesr-animevideov3 -s 2 -f jpg |
|
``` |
|
|
|
- Remember to create the folder `out_frames` ahead |
|
|
|
#### Step 3: Merge the enhanced frames back into a video |
|
|
|
1. First obtain fps from input videos by |
|
|
|
```bash |
|
ffmpeg -i onepiece_demo.mp4 |
|
``` |
|
|
|
```console |
|
Usage: |
|
-i input video path |
|
``` |
|
|
|
You will get the output similar to the following screenshot. |
|
|
|
<p align="center"> |
|
<img src="https://user-images.githubusercontent.com/17445847/145710145-c4f3accf-b82f-4307-9f20-3803a2c73f57.png"> |
|
</p> |
|
|
|
2. Merge frames |
|
|
|
```bash |
|
ffmpeg -r 23.98 -i out_frames/frame%08d.jpg -c:v libx264 -r 23.98 -pix_fmt yuv420p output.mp4 |
|
``` |
|
|
|
```console |
|
Usage: |
|
-i input video path |
|
-c:v video encoder (usually we use libx264) |
|
-r fps, remember to modify it to meet your needs |
|
-pix_fmt pixel format in video |
|
``` |
|
|
|
If you also want to copy audio from the input videos, run: |
|
|
|
```bash |
|
ffmpeg -r 23.98 -i out_frames/frame%08d.jpg -i onepiece_demo.mp4 -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r 23.98 -pix_fmt yuv420p output_w_audio.mp4 |
|
``` |
|
|
|
```console |
|
Usage: |
|
-i input video path, here we use two input streams |
|
-c:v video encoder (usually we use libx264) |
|
-r fps, remember to modify it to meet your needs |
|
-pix_fmt pixel format in video |
|
``` |
|
|
|
## More Demos |
|
|
|
- Input video for One Piece: |
|
|
|
<https://user-images.githubusercontent.com/17445847/145706822-0e83d9c4-78ef-40ee-b2a4-d8b8c3692d17.mp4> |
|
|
|
- Out video for One Piece |
|
|
|
<https://user-images.githubusercontent.com/17445847/164960481-759658cf-fcb8-480c-b888-cecb606e8744.mp4> |
|
|
|
**More comparisons** |
|
|
|
<https://user-images.githubusercontent.com/17445847/145707458-04a5e9b9-2edd-4d1f-b400-380a72e5f5e6.MP4> |
|
|