Spaces:
Runtime error
Runtime error
File size: 1,392 Bytes
1567d28 f383982 1567d28 d233fa7 1567d28 d233fa7 1567d28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import requests
hotdog_url = 'https://potatorolls.com/wp-content/uploads/2020/10/Basic-Hot-Dogs-960x640.jpg'
hotdog_image = Image.open(requests.get(hotdog_url, stream=True).raw)
muffin_url = "https://www.recipetineats.com/wp-content/uploads/2023/05/Up-and-go-breakfast-muffins_9.jpg"
muffin_image = Image.open(requests.get(muffin_url, stream=True).raw)
juice_url = "https://recipes.net/wp-content/uploads/2024/01/how-to-drink-fresh-juice-1705739043.jpg"
juice_image = Image.open(requests.get(juice_url, stream=True).raw)
def snacks_classifier(input_image):
# Init model, transforms
processor = ViTImageProcessor.from_pretrained('yangswei/snacks_classification')
model = ViTForImageClassification.from_pretrained('yangswei/snacks_classification')
# inputs & outputs
inputs = processor(images=input_image, return_tensors="pt")
outputs = model(**inputs).logits.softmax(1)
labels = model.config.id2label
confidences = {labels[i]: outputs[0][i].item() for i in range(len(labels))}
return confidences
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Interface(fn=snacks_classifier, inputs="image", outputs=gr.Label(num_top_classes=20, label="Prediction"),
examples=[hotdog_image, muffin_image, juice_image])
demo.launch() |