a96123155 commited on
Commit
233d418
·
1 Parent(s): 57b83e4
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +0 -544
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py DELETED
@@ -1,544 +0,0 @@
1
- import streamlit as st
2
- from io import StringIO
3
- from Bio import SeqIO
4
-
5
- st.title("IRES-LM prediction and mutation")
6
-
7
- # Input sequence
8
- st.subheader("Input sequence")
9
-
10
- seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
11
- st.subheader("Upload sequence file")
12
- uploaded = st.file_uploader("Sequence file in FASTA format")
13
-
14
- # augments
15
- global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
16
- output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
17
- start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
18
- end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
19
- mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
20
- transform_type = st.selectbox("Type of probability transformation",
21
- ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
22
- index=2)
23
- mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
24
- n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
25
- n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
26
- n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
27
- n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
28
- mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
29
-
30
- if not mut_by_prob and transform_type != '':
31
- st.write("--transform_type must be '' when --mut_by_prob is False")
32
- transform_type = ''
33
-
34
- global model, device
35
- device = "cpu"
36
- state_dict = torch.load('model.pt', map_location=torch.device(device))
37
- new_state_dict = OrderedDict()
38
-
39
- for k, v in state_dict.items():
40
- name = k.replace('module.','')
41
- new_state_dict[name] = v
42
-
43
- model = CNN_linear().to(device)
44
- model.load_state_dict(new_state_dict, strict = False)
45
-
46
- # Import necessary libraries
47
- # import matplotlib
48
- # import matplotlib.pyplot as plt
49
- import numpy as np
50
- import os
51
- import pandas as pd
52
- # import pathlib
53
- import random
54
- # import scanpy as sc
55
- # import seaborn as sns
56
- import torch
57
- import torch.nn as nn
58
- import torch.nn.functional as F
59
- # from argparse import Namespace
60
- from collections import Counter, OrderedDict
61
- from copy import deepcopy
62
- from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
63
- from esm.data import *
64
- from esm.model.esm2 import ESM2
65
- # from sklearn import preprocessing
66
- # from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
67
- # precision_recall_fscore_support,
68
- # precision_recall_curve, classification_report,
69
- # roc_auc_score, average_precision_score,
70
- # precision_score, recall_score, f1_score,
71
- # accuracy_score)
72
- # from sklearn.model_selection import StratifiedKFold
73
- # from sklearn.utils import class_weight
74
- # from scipy.stats import spearmanr, pearsonr
75
- from torch import nn
76
- from torch.nn import Linear
77
- from torch.nn.utils.rnn import pad_sequence
78
- from torch.utils.data import Dataset, DataLoader
79
- from tqdm import tqdm, trange
80
-
81
- # Set global variables
82
- # matplotlib.rcParams.update({'font.size': 7})
83
- seed = 19961231
84
- random.seed(seed)
85
- np.random.seed(seed)
86
- torch.manual_seed(seed)
87
- # torch.cuda.manual_seed(seed)
88
- # torch.backends.cudnn.deterministic = True
89
- # torch.backends.cudnn.benchmark = False
90
-
91
-
92
- global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
93
-
94
- epochs = 5
95
- layers = 6
96
- heads = 16
97
- embed_dim = 128
98
- batch_toks = 4096
99
- fc_node = 64
100
- dropout_prob = 0.5
101
- folds = 10
102
- repr_layers = [-1]
103
- include = ["mean"]
104
- truncate = True
105
- finetune = False
106
- return_contacts = False
107
- return_representation = False
108
-
109
- global tok_to_idx, idx_to_tok, mask_toks_id
110
- alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
111
- assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
112
-
113
- # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
114
- tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
115
- idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
116
- # st.write(tok_to_idx)
117
- mask_toks_id = 8
118
-
119
- global w1, w2, w3
120
- w1, w2, w3 = 1, 1, 100
121
-
122
- class CNN_linear(nn.Module):
123
- def __init__(self):
124
- super(CNN_linear, self).__init__()
125
-
126
- self.esm2 = ESM2(num_layers = layers,
127
- embed_dim = embed_dim,
128
- attention_heads = heads,
129
- alphabet = alphabet)
130
-
131
- self.dropout = nn.Dropout(dropout_prob)
132
- self.relu = nn.ReLU()
133
- self.flatten = nn.Flatten()
134
- self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
135
- self.output = nn.Linear(in_features = fc_node, out_features = 2)
136
-
137
- def predict(self, tokens):
138
-
139
- x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
140
- x_cls = x["representations"][layers][:, 0]
141
-
142
- o = self.fc(x_cls)
143
- o = self.relu(o)
144
- o = self.dropout(o)
145
- o = self.output(o)
146
-
147
- y_prob = torch.softmax(o, dim = 1)
148
- y_pred = torch.argmax(y_prob, dim = 1)
149
-
150
- if transform_type:
151
- y_prob_transformed = prob_transform(y_prob[:,1])
152
- return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
153
- else:
154
- return y_prob[:,1], y_pred, x['logits'], o[:,1]
155
-
156
- def forward(self, x1, x2):
157
- logit_1, repr_1 = self.predict(x1)
158
- logit_2, repr_2 = self.predict(x2)
159
- return (logit_1, logit_2), (repr_1, repr_2)
160
-
161
- def prob_transform(prob, **kwargs): # Logits
162
- """
163
- Transforms probability values based on the specified method.
164
-
165
- :param prob: torch.Tensor, the input probabilities to be transformed
166
- :param transform_type: str, the type of transformation to be applied
167
- :param kwargs: additional parameters for transformations
168
- :return: torch.Tensor, transformed probabilities
169
- """
170
-
171
- if transform_type == 'sigmoid':
172
- x0 = kwget('x0', 0.5)
173
- k = kwget('k', 10.0)
174
- prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
175
-
176
- elif transform_type == 'logit':
177
- # Adding a small value to avoid log(0) and log(1)
178
- prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
179
-
180
- elif transform_type == 'power_law':
181
- gamma = kwget('gamma', 2.0)
182
- prob_transformed = torch.pow(prob, gamma)
183
-
184
- elif transform_type == 'tanh':
185
- k = kwget('k', 2.0)
186
- prob_transformed = torch.tanh(k * prob)
187
-
188
- return prob_transformed
189
-
190
- def random_replace(sequence, continuous_replace=False):
191
- if end_nt_position == -1: end_nt_position = len(sequence)
192
- if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
193
- # raise ValueError("Invalid start/end positions")
194
- st.write("Invalid start/end positions")
195
- start_nt_position, end_nt_position = 0, -1
196
-
197
- # 将序列切片成三部分:替换区域前、替换区域、替换区域后
198
- pre_segment = sequence[:start_nt_position]
199
- target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
200
- post_segment = sequence[end_nt_position + 1:]
201
-
202
- if not continuous_replace:
203
- # 随机替换目标片段的mlm_tok_num个位置
204
- indices = random.sample(range(len(target_segment)), mlm_tok_num)
205
- for idx in indices:
206
- target_segment[idx] = '*'
207
- else:
208
- # 在目标片段连续替换mlm_tok_num个位置
209
- max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
210
- if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
211
- return target_segment
212
- start_idx = random.randint(0, max_start_idx)
213
- for idx in range(start_idx, start_idx + mlm_tok_num):
214
- target_segment[idx] = '*'
215
-
216
- # 合并并返回最终的序列
217
- return ''.join([pre_segment] + target_segment + [post_segment])
218
-
219
-
220
- def mlm_seq(seq):
221
- seq_token, masked_sequence_token = [7],[7]
222
- seq_token += [tok_to_idx[token] for token in seq]
223
-
224
- masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
225
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
226
-
227
- return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
228
-
229
- def batch_mlm_seq(seq_list, continuous_replace = False):
230
- batch_seq = []
231
- batch_masked_seq = []
232
- batch_seq_token_list = []
233
- batch_masked_seq_token_list = []
234
-
235
- for i, seq in enumerate(seq_list):
236
- seq_token, masked_seq_token = [7], [7]
237
- seq_token += [tok_to_idx[token] for token in seq]
238
-
239
- masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
240
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
241
-
242
- batch_seq.append(seq)
243
- batch_masked_seq.append(masked_seq)
244
-
245
- batch_seq_token_list.append(seq_token)
246
- batch_masked_seq_token_list.append(masked_seq_token)
247
-
248
- return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
249
-
250
- def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
251
- # Only remain the AGCT logits
252
- esm_logits = esm_logits[:,:,3:7]
253
- # Get the predicted tokens using argmax
254
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
255
-
256
- batch_size, seq_len, vocab_size = esm_logits.size()
257
- if exclude_low_prob: min_prob = 1 / vocab_size
258
- # Initialize an empty list to store the recovered sequences
259
- recovered_sequences, recovered_toks = [], []
260
-
261
- for i in range(batch_size):
262
- recovered_sequence_i, recovered_tok_i = [], []
263
- for j in range(seq_len):
264
- if masked_toks[i][j] == 8:
265
- st.write(i,j)
266
- ### Sample M recovery sequences using the logits
267
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
268
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
269
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
270
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
271
-
272
- ### 有放回抽样
273
- max_retries = 5
274
- retries = 0
275
- success = False
276
-
277
- while retries < max_retries and not success:
278
- try:
279
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
280
- success = True # 设置成功标志
281
- except ValueError as e:
282
- retries += 1
283
- st.write(f"Attempt {retries} failed with error: {e}")
284
- if retries >= max_retries:
285
- st.write("Max retries reached. Skipping this iteration.")
286
-
287
- ### recovery to sequence
288
- if retries < max_retries:
289
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
290
- recovery_seq = deepcopy(list(masked_seqs[i]))
291
- recovery_tok = deepcopy(masked_toks[i])
292
-
293
- recovery_tok[j] = idx
294
- recovery_seq[j-1] = idx_to_tok[idx]
295
-
296
- recovered_tok_i.append(recovery_tok)
297
- recovered_sequence_i.append(''.join(recovery_seq))
298
-
299
- recovered_sequences.extend(recovered_sequence_i)
300
- recovered_toks.extend(recovered_tok_i)
301
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
302
-
303
- def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
304
- # Only remain the AGCT logits
305
- esm_logits = esm_logits[:,:,3:7]
306
- # Get the predicted tokens using argmax
307
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
308
-
309
- batch_size, seq_len, vocab_size = esm_logits.size()
310
- if exclude_low_prob: min_prob = 1 / vocab_size
311
- # Initialize an empty list to store the recovered sequences
312
- recovered_sequences, recovered_toks = [], []
313
-
314
- for i in range(batch_size):
315
- recovered_sequence_i, recovered_tok_i = [], []
316
- recovered_masked_num = 0
317
- for j in range(seq_len):
318
- if masked_toks[i][j] == 8:
319
- ### Sample M recovery sequences using the logits
320
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
321
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
322
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
323
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
324
-
325
- ### 有放回抽样
326
- max_retries = 5
327
- retries = 0
328
- success = False
329
-
330
- while retries < max_retries and not success:
331
- try:
332
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
333
- success = True # 设置成功标志
334
- except ValueError as e:
335
- retries += 1
336
- st.write(f"Attempt {retries} failed with error: {e}")
337
- if retries >= max_retries:
338
- st.write("Max retries reached. Skipping this iteration.")
339
-
340
- ### recovery to sequence
341
-
342
- if recovered_masked_num == 0:
343
- if retries < max_retries:
344
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
345
- recovery_seq = deepcopy(list(masked_seqs[i]))
346
- recovery_tok = deepcopy(masked_toks[i])
347
-
348
- recovery_tok[j] = idx
349
- recovery_seq[j-1] = idx_to_tok[idx]
350
-
351
- recovered_tok_i.append(recovery_tok)
352
- recovered_sequence_i.append(''.join(recovery_seq))
353
-
354
- elif recovered_masked_num > 0:
355
- if retries < max_retries:
356
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
357
- for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
358
-
359
- recovery_seq_temp = list(recovery_seq)
360
- recovery_tok[j] = idx
361
- recovery_seq_temp[j-1] = idx_to_tok[idx]
362
-
363
- recovered_tok_i.append(recovery_tok)
364
- recovered_sequence_i.append(''.join(recovery_seq_temp))
365
-
366
- recovered_masked_num += 1
367
- recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
368
- recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
369
- recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
370
-
371
- recovered_sequences.extend(recovered_sequence_i)
372
- recovered_toks.extend(recovered_tok_i)
373
-
374
- recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
375
-
376
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
377
-
378
- def mismatched_positions(s1, s2):
379
- # 这个函数假定两个字符串的长度相同。
380
- """Return the number of positions where two strings differ."""
381
-
382
- # The number of mismatches will be the sum of positions where characters are not the same
383
- return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
384
-
385
- def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
386
- seen = {}
387
- unique_seqs = []
388
- unique_probs = []
389
- unique_logits = []
390
-
391
- for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
392
- if seq not in seen:
393
- unique_seqs.append(seq)
394
- unique_probs.append(prob)
395
- unique_logits.append(logit)
396
- seen[seq] = True
397
-
398
- return unique_seqs, unique_probs, unique_logits
399
-
400
- def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
401
- seen = {}
402
- unique_seqs = []
403
- unique_probs = []
404
-
405
- for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
406
- if seq not in seen:
407
- unique_seqs.append(seq)
408
- unique_probs.append(prob)
409
- seen[seq] = True
410
-
411
- return unique_seqs, unique_probs
412
-
413
- def mutated_seq(wt_seq, wt_label):
414
- wt_seq = '!'+ wt_seq
415
- wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
416
- wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
417
- st.write('Wild Type: Length')
418
- st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
419
- st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
420
- st.write('sdafdasWild Type: Length')
421
- # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
422
- # pbar = tqdm(total=n_mut)
423
- mutated_seqs = []
424
- i = 1
425
- # pbar = st.progress(i, text="mutated number of sequence")
426
- while i <= n_mut:
427
- if i == 1: seeds_ep = [wt_seq[1:]]
428
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
429
- for seed in seeds_ep:
430
- seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
431
-
432
- seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
433
- _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
434
- mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
435
- mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
436
-
437
- ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
438
- filtered_mut_seqs = []
439
- filtered_mut_probs = []
440
- filtered_mut_logits = []
441
- if mut_by_prob:
442
- for z in range(len(mut_seqs)):
443
- if mutate2stronger:
444
- if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
445
- filtered_mut_seqs.append(mut_seqs[z])
446
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
447
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
448
- else:
449
- if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
450
- filtered_mut_seqs.append(mut_seqs[z])
451
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
452
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
453
- else:
454
- for z in range(len(mut_seqs)):
455
- if mutate2stronger:
456
- if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
457
- filtered_mut_seqs.append(mut_seqs[z])
458
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
459
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
460
- else:
461
- if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
462
- filtered_mut_seqs.append(mut_seqs[z])
463
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
464
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
465
-
466
-
467
-
468
- ### Save
469
- seeds_next_ep.extend(filtered_mut_seqs)
470
- seeds_probs_next_ep.extend(filtered_mut_probs)
471
- seeds_logits_next_ep.extend(filtered_mut_logits)
472
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
473
-
474
- ### Sampling based on prob
475
- if len(seeds_next_ep) > n_sampling_designs_ep:
476
- seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
477
- seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
478
-
479
- seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
480
- seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
481
- seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
482
- seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
483
-
484
- mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
485
-
486
- seeds_ep = seeds_next_ep
487
- i += 1
488
- # pbar.update(1)
489
- # pbar.progress(i/n_mut, text="Mutating")
490
- # pbar.close()
491
- # st.success('Done', icon="✅")
492
- mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
493
- mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
494
- mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
495
- return mutated_seqs
496
-
497
- def read_raw(raw_input):
498
- ids = []
499
- sequences = []
500
-
501
- file = StringIO(raw_input)
502
- for record in SeqIO.parse(file, "fasta"):
503
-
504
- # 检查序列是否只包含A, G, C, T
505
- sequence = str(record.seq.back_transcribe()).upper()
506
- if not set(sequence).issubset(set("AGCT")):
507
- st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
508
- continue
509
-
510
- # 将符合条件的序列添加到列表中
511
- ids.append(record.id)
512
- sequences.append(sequence)
513
-
514
- return ids, sequences
515
-
516
- def predict_raw(raw_input):
517
- model.eval()
518
- # st.write(model)
519
- # st.write('====Parse Input====')
520
- ids, seqs = read_raw(raw_input)
521
-
522
- # st.write('====Predict====')
523
- res_pd = pd.DataFrame()
524
- for wt_seq, wt_id in zip(seqs, ids):
525
- # try:
526
- st.write(wt_id, wt_seq)
527
- res = mutated_seq(wt_seq, wt_id)
528
- st.write(res)
529
- res_pd.append(res)
530
- # except:
531
- # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
532
- st.write(res_pd)
533
- return res_pd
534
-
535
- # Run
536
- if st.button("Predict and Mutate"):
537
- if uploaded:
538
- result = predict_raw(uploaded.getvalue().decode())
539
- else:
540
- result = predict_raw(seq)
541
-
542
- result_file = result.to_csv(index=False)
543
- st.download_button("Download", result_file, file_name=output_filename+".csv")
544
- st.dataframe(result)