a96123155 commited on
Commit
57b83e4
·
1 Parent(s): 3e510a8
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +544 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py ADDED
@@ -0,0 +1,544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from io import StringIO
3
+ from Bio import SeqIO
4
+
5
+ st.title("IRES-LM prediction and mutation")
6
+
7
+ # Input sequence
8
+ st.subheader("Input sequence")
9
+
10
+ seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
11
+ st.subheader("Upload sequence file")
12
+ uploaded = st.file_uploader("Sequence file in FASTA format")
13
+
14
+ # augments
15
+ global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
16
+ output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
17
+ start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
18
+ end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
19
+ mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
20
+ transform_type = st.selectbox("Type of probability transformation",
21
+ ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
22
+ index=2)
23
+ mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
24
+ n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
25
+ n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
26
+ n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
27
+ n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
28
+ mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
29
+
30
+ if not mut_by_prob and transform_type != '':
31
+ st.write("--transform_type must be '' when --mut_by_prob is False")
32
+ transform_type = ''
33
+
34
+ global model, device
35
+ device = "cpu"
36
+ state_dict = torch.load('model.pt', map_location=torch.device(device))
37
+ new_state_dict = OrderedDict()
38
+
39
+ for k, v in state_dict.items():
40
+ name = k.replace('module.','')
41
+ new_state_dict[name] = v
42
+
43
+ model = CNN_linear().to(device)
44
+ model.load_state_dict(new_state_dict, strict = False)
45
+
46
+ # Import necessary libraries
47
+ # import matplotlib
48
+ # import matplotlib.pyplot as plt
49
+ import numpy as np
50
+ import os
51
+ import pandas as pd
52
+ # import pathlib
53
+ import random
54
+ # import scanpy as sc
55
+ # import seaborn as sns
56
+ import torch
57
+ import torch.nn as nn
58
+ import torch.nn.functional as F
59
+ # from argparse import Namespace
60
+ from collections import Counter, OrderedDict
61
+ from copy import deepcopy
62
+ from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
63
+ from esm.data import *
64
+ from esm.model.esm2 import ESM2
65
+ # from sklearn import preprocessing
66
+ # from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
67
+ # precision_recall_fscore_support,
68
+ # precision_recall_curve, classification_report,
69
+ # roc_auc_score, average_precision_score,
70
+ # precision_score, recall_score, f1_score,
71
+ # accuracy_score)
72
+ # from sklearn.model_selection import StratifiedKFold
73
+ # from sklearn.utils import class_weight
74
+ # from scipy.stats import spearmanr, pearsonr
75
+ from torch import nn
76
+ from torch.nn import Linear
77
+ from torch.nn.utils.rnn import pad_sequence
78
+ from torch.utils.data import Dataset, DataLoader
79
+ from tqdm import tqdm, trange
80
+
81
+ # Set global variables
82
+ # matplotlib.rcParams.update({'font.size': 7})
83
+ seed = 19961231
84
+ random.seed(seed)
85
+ np.random.seed(seed)
86
+ torch.manual_seed(seed)
87
+ # torch.cuda.manual_seed(seed)
88
+ # torch.backends.cudnn.deterministic = True
89
+ # torch.backends.cudnn.benchmark = False
90
+
91
+
92
+ global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
93
+
94
+ epochs = 5
95
+ layers = 6
96
+ heads = 16
97
+ embed_dim = 128
98
+ batch_toks = 4096
99
+ fc_node = 64
100
+ dropout_prob = 0.5
101
+ folds = 10
102
+ repr_layers = [-1]
103
+ include = ["mean"]
104
+ truncate = True
105
+ finetune = False
106
+ return_contacts = False
107
+ return_representation = False
108
+
109
+ global tok_to_idx, idx_to_tok, mask_toks_id
110
+ alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
111
+ assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
112
+
113
+ # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
114
+ tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
115
+ idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
116
+ # st.write(tok_to_idx)
117
+ mask_toks_id = 8
118
+
119
+ global w1, w2, w3
120
+ w1, w2, w3 = 1, 1, 100
121
+
122
+ class CNN_linear(nn.Module):
123
+ def __init__(self):
124
+ super(CNN_linear, self).__init__()
125
+
126
+ self.esm2 = ESM2(num_layers = layers,
127
+ embed_dim = embed_dim,
128
+ attention_heads = heads,
129
+ alphabet = alphabet)
130
+
131
+ self.dropout = nn.Dropout(dropout_prob)
132
+ self.relu = nn.ReLU()
133
+ self.flatten = nn.Flatten()
134
+ self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
135
+ self.output = nn.Linear(in_features = fc_node, out_features = 2)
136
+
137
+ def predict(self, tokens):
138
+
139
+ x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
140
+ x_cls = x["representations"][layers][:, 0]
141
+
142
+ o = self.fc(x_cls)
143
+ o = self.relu(o)
144
+ o = self.dropout(o)
145
+ o = self.output(o)
146
+
147
+ y_prob = torch.softmax(o, dim = 1)
148
+ y_pred = torch.argmax(y_prob, dim = 1)
149
+
150
+ if transform_type:
151
+ y_prob_transformed = prob_transform(y_prob[:,1])
152
+ return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
153
+ else:
154
+ return y_prob[:,1], y_pred, x['logits'], o[:,1]
155
+
156
+ def forward(self, x1, x2):
157
+ logit_1, repr_1 = self.predict(x1)
158
+ logit_2, repr_2 = self.predict(x2)
159
+ return (logit_1, logit_2), (repr_1, repr_2)
160
+
161
+ def prob_transform(prob, **kwargs): # Logits
162
+ """
163
+ Transforms probability values based on the specified method.
164
+
165
+ :param prob: torch.Tensor, the input probabilities to be transformed
166
+ :param transform_type: str, the type of transformation to be applied
167
+ :param kwargs: additional parameters for transformations
168
+ :return: torch.Tensor, transformed probabilities
169
+ """
170
+
171
+ if transform_type == 'sigmoid':
172
+ x0 = kwget('x0', 0.5)
173
+ k = kwget('k', 10.0)
174
+ prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
175
+
176
+ elif transform_type == 'logit':
177
+ # Adding a small value to avoid log(0) and log(1)
178
+ prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
179
+
180
+ elif transform_type == 'power_law':
181
+ gamma = kwget('gamma', 2.0)
182
+ prob_transformed = torch.pow(prob, gamma)
183
+
184
+ elif transform_type == 'tanh':
185
+ k = kwget('k', 2.0)
186
+ prob_transformed = torch.tanh(k * prob)
187
+
188
+ return prob_transformed
189
+
190
+ def random_replace(sequence, continuous_replace=False):
191
+ if end_nt_position == -1: end_nt_position = len(sequence)
192
+ if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
193
+ # raise ValueError("Invalid start/end positions")
194
+ st.write("Invalid start/end positions")
195
+ start_nt_position, end_nt_position = 0, -1
196
+
197
+ # 将序列切片成三部分:替换区域前、替换区域、替换区域后
198
+ pre_segment = sequence[:start_nt_position]
199
+ target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
200
+ post_segment = sequence[end_nt_position + 1:]
201
+
202
+ if not continuous_replace:
203
+ # 随机替换目标片段的mlm_tok_num个位置
204
+ indices = random.sample(range(len(target_segment)), mlm_tok_num)
205
+ for idx in indices:
206
+ target_segment[idx] = '*'
207
+ else:
208
+ # 在目标片段连续替换mlm_tok_num个位置
209
+ max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
210
+ if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
211
+ return target_segment
212
+ start_idx = random.randint(0, max_start_idx)
213
+ for idx in range(start_idx, start_idx + mlm_tok_num):
214
+ target_segment[idx] = '*'
215
+
216
+ # 合并并返回最终的序列
217
+ return ''.join([pre_segment] + target_segment + [post_segment])
218
+
219
+
220
+ def mlm_seq(seq):
221
+ seq_token, masked_sequence_token = [7],[7]
222
+ seq_token += [tok_to_idx[token] for token in seq]
223
+
224
+ masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
225
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
226
+
227
+ return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
228
+
229
+ def batch_mlm_seq(seq_list, continuous_replace = False):
230
+ batch_seq = []
231
+ batch_masked_seq = []
232
+ batch_seq_token_list = []
233
+ batch_masked_seq_token_list = []
234
+
235
+ for i, seq in enumerate(seq_list):
236
+ seq_token, masked_seq_token = [7], [7]
237
+ seq_token += [tok_to_idx[token] for token in seq]
238
+
239
+ masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
240
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
241
+
242
+ batch_seq.append(seq)
243
+ batch_masked_seq.append(masked_seq)
244
+
245
+ batch_seq_token_list.append(seq_token)
246
+ batch_masked_seq_token_list.append(masked_seq_token)
247
+
248
+ return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
249
+
250
+ def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
251
+ # Only remain the AGCT logits
252
+ esm_logits = esm_logits[:,:,3:7]
253
+ # Get the predicted tokens using argmax
254
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
255
+
256
+ batch_size, seq_len, vocab_size = esm_logits.size()
257
+ if exclude_low_prob: min_prob = 1 / vocab_size
258
+ # Initialize an empty list to store the recovered sequences
259
+ recovered_sequences, recovered_toks = [], []
260
+
261
+ for i in range(batch_size):
262
+ recovered_sequence_i, recovered_tok_i = [], []
263
+ for j in range(seq_len):
264
+ if masked_toks[i][j] == 8:
265
+ st.write(i,j)
266
+ ### Sample M recovery sequences using the logits
267
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
268
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
269
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
270
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
271
+
272
+ ### 有放回抽样
273
+ max_retries = 5
274
+ retries = 0
275
+ success = False
276
+
277
+ while retries < max_retries and not success:
278
+ try:
279
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
280
+ success = True # 设置成功标志
281
+ except ValueError as e:
282
+ retries += 1
283
+ st.write(f"Attempt {retries} failed with error: {e}")
284
+ if retries >= max_retries:
285
+ st.write("Max retries reached. Skipping this iteration.")
286
+
287
+ ### recovery to sequence
288
+ if retries < max_retries:
289
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
290
+ recovery_seq = deepcopy(list(masked_seqs[i]))
291
+ recovery_tok = deepcopy(masked_toks[i])
292
+
293
+ recovery_tok[j] = idx
294
+ recovery_seq[j-1] = idx_to_tok[idx]
295
+
296
+ recovered_tok_i.append(recovery_tok)
297
+ recovered_sequence_i.append(''.join(recovery_seq))
298
+
299
+ recovered_sequences.extend(recovered_sequence_i)
300
+ recovered_toks.extend(recovered_tok_i)
301
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
302
+
303
+ def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
304
+ # Only remain the AGCT logits
305
+ esm_logits = esm_logits[:,:,3:7]
306
+ # Get the predicted tokens using argmax
307
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
308
+
309
+ batch_size, seq_len, vocab_size = esm_logits.size()
310
+ if exclude_low_prob: min_prob = 1 / vocab_size
311
+ # Initialize an empty list to store the recovered sequences
312
+ recovered_sequences, recovered_toks = [], []
313
+
314
+ for i in range(batch_size):
315
+ recovered_sequence_i, recovered_tok_i = [], []
316
+ recovered_masked_num = 0
317
+ for j in range(seq_len):
318
+ if masked_toks[i][j] == 8:
319
+ ### Sample M recovery sequences using the logits
320
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
321
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
322
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
323
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
324
+
325
+ ### 有放回抽样
326
+ max_retries = 5
327
+ retries = 0
328
+ success = False
329
+
330
+ while retries < max_retries and not success:
331
+ try:
332
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
333
+ success = True # 设置成功标志
334
+ except ValueError as e:
335
+ retries += 1
336
+ st.write(f"Attempt {retries} failed with error: {e}")
337
+ if retries >= max_retries:
338
+ st.write("Max retries reached. Skipping this iteration.")
339
+
340
+ ### recovery to sequence
341
+
342
+ if recovered_masked_num == 0:
343
+ if retries < max_retries:
344
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
345
+ recovery_seq = deepcopy(list(masked_seqs[i]))
346
+ recovery_tok = deepcopy(masked_toks[i])
347
+
348
+ recovery_tok[j] = idx
349
+ recovery_seq[j-1] = idx_to_tok[idx]
350
+
351
+ recovered_tok_i.append(recovery_tok)
352
+ recovered_sequence_i.append(''.join(recovery_seq))
353
+
354
+ elif recovered_masked_num > 0:
355
+ if retries < max_retries:
356
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
357
+ for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
358
+
359
+ recovery_seq_temp = list(recovery_seq)
360
+ recovery_tok[j] = idx
361
+ recovery_seq_temp[j-1] = idx_to_tok[idx]
362
+
363
+ recovered_tok_i.append(recovery_tok)
364
+ recovered_sequence_i.append(''.join(recovery_seq_temp))
365
+
366
+ recovered_masked_num += 1
367
+ recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
368
+ recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
369
+ recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
370
+
371
+ recovered_sequences.extend(recovered_sequence_i)
372
+ recovered_toks.extend(recovered_tok_i)
373
+
374
+ recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
375
+
376
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
377
+
378
+ def mismatched_positions(s1, s2):
379
+ # 这个函数假定两个字符串的长度相同。
380
+ """Return the number of positions where two strings differ."""
381
+
382
+ # The number of mismatches will be the sum of positions where characters are not the same
383
+ return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
384
+
385
+ def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
386
+ seen = {}
387
+ unique_seqs = []
388
+ unique_probs = []
389
+ unique_logits = []
390
+
391
+ for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
392
+ if seq not in seen:
393
+ unique_seqs.append(seq)
394
+ unique_probs.append(prob)
395
+ unique_logits.append(logit)
396
+ seen[seq] = True
397
+
398
+ return unique_seqs, unique_probs, unique_logits
399
+
400
+ def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
401
+ seen = {}
402
+ unique_seqs = []
403
+ unique_probs = []
404
+
405
+ for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
406
+ if seq not in seen:
407
+ unique_seqs.append(seq)
408
+ unique_probs.append(prob)
409
+ seen[seq] = True
410
+
411
+ return unique_seqs, unique_probs
412
+
413
+ def mutated_seq(wt_seq, wt_label):
414
+ wt_seq = '!'+ wt_seq
415
+ wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
416
+ wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
417
+ st.write('Wild Type: Length')
418
+ st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
419
+ st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
420
+ st.write('sdafdasWild Type: Length')
421
+ # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
422
+ # pbar = tqdm(total=n_mut)
423
+ mutated_seqs = []
424
+ i = 1
425
+ # pbar = st.progress(i, text="mutated number of sequence")
426
+ while i <= n_mut:
427
+ if i == 1: seeds_ep = [wt_seq[1:]]
428
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
429
+ for seed in seeds_ep:
430
+ seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
431
+
432
+ seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
433
+ _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
434
+ mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
435
+ mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
436
+
437
+ ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
438
+ filtered_mut_seqs = []
439
+ filtered_mut_probs = []
440
+ filtered_mut_logits = []
441
+ if mut_by_prob:
442
+ for z in range(len(mut_seqs)):
443
+ if mutate2stronger:
444
+ if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
445
+ filtered_mut_seqs.append(mut_seqs[z])
446
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
447
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
448
+ else:
449
+ if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
450
+ filtered_mut_seqs.append(mut_seqs[z])
451
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
452
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
453
+ else:
454
+ for z in range(len(mut_seqs)):
455
+ if mutate2stronger:
456
+ if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
457
+ filtered_mut_seqs.append(mut_seqs[z])
458
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
459
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
460
+ else:
461
+ if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
462
+ filtered_mut_seqs.append(mut_seqs[z])
463
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
464
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
465
+
466
+
467
+
468
+ ### Save
469
+ seeds_next_ep.extend(filtered_mut_seqs)
470
+ seeds_probs_next_ep.extend(filtered_mut_probs)
471
+ seeds_logits_next_ep.extend(filtered_mut_logits)
472
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
473
+
474
+ ### Sampling based on prob
475
+ if len(seeds_next_ep) > n_sampling_designs_ep:
476
+ seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
477
+ seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
478
+
479
+ seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
480
+ seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
481
+ seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
482
+ seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
483
+
484
+ mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
485
+
486
+ seeds_ep = seeds_next_ep
487
+ i += 1
488
+ # pbar.update(1)
489
+ # pbar.progress(i/n_mut, text="Mutating")
490
+ # pbar.close()
491
+ # st.success('Done', icon="✅")
492
+ mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
493
+ mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
494
+ mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
495
+ return mutated_seqs
496
+
497
+ def read_raw(raw_input):
498
+ ids = []
499
+ sequences = []
500
+
501
+ file = StringIO(raw_input)
502
+ for record in SeqIO.parse(file, "fasta"):
503
+
504
+ # 检查序列是否只包含A, G, C, T
505
+ sequence = str(record.seq.back_transcribe()).upper()
506
+ if not set(sequence).issubset(set("AGCT")):
507
+ st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
508
+ continue
509
+
510
+ # 将符合条件的序列添加到列表中
511
+ ids.append(record.id)
512
+ sequences.append(sequence)
513
+
514
+ return ids, sequences
515
+
516
+ def predict_raw(raw_input):
517
+ model.eval()
518
+ # st.write(model)
519
+ # st.write('====Parse Input====')
520
+ ids, seqs = read_raw(raw_input)
521
+
522
+ # st.write('====Predict====')
523
+ res_pd = pd.DataFrame()
524
+ for wt_seq, wt_id in zip(seqs, ids):
525
+ # try:
526
+ st.write(wt_id, wt_seq)
527
+ res = mutated_seq(wt_seq, wt_id)
528
+ st.write(res)
529
+ res_pd.append(res)
530
+ # except:
531
+ # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
532
+ st.write(res_pd)
533
+ return res_pd
534
+
535
+ # Run
536
+ if st.button("Predict and Mutate"):
537
+ if uploaded:
538
+ result = predict_raw(uploaded.getvalue().decode())
539
+ else:
540
+ result = predict_raw(seq)
541
+
542
+ result_file = result.to_csv(index=False)
543
+ st.download_button("Download", result_file, file_name=output_filename+".csv")
544
+ st.dataframe(result)