a96123155 commited on
Commit
3e510a8
·
1 Parent(s): ea6da00
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +0 -551
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py DELETED
@@ -1,551 +0,0 @@
1
- import streamlit as st
2
- from io import StringIO
3
- from Bio import SeqIO
4
-
5
- st.title("IRES-LM prediction and mutation")
6
-
7
- # Input sequence
8
- st.subheader("Input sequence")
9
-
10
- seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
11
- st.subheader("Upload sequence file")
12
- uploaded = st.file_uploader("Sequence file in FASTA format")
13
-
14
- # augments
15
- global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
16
- output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
17
- start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
18
- end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
19
- mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
20
- transform_type = st.selectbox("Type of probability transformation",
21
- ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
22
- index=2)
23
- mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
24
- n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
25
- n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
26
- n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
27
- n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
28
- mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
29
-
30
- if not mut_by_prob and transform_type != '':
31
- st.write("--transform_type must be '' when --mut_by_prob is False")
32
- transform_type = ''
33
-
34
- global model
35
- state_dict = torch.load('model.pt', map_location=torch.device(device))
36
- new_state_dict = OrderedDict()
37
-
38
- for k, v in state_dict.items():
39
- name = k.replace('module.','')
40
- new_state_dict[name] = v
41
-
42
- model = CNN_linear().to(device)
43
- model.load_state_dict(new_state_dict, strict = False)
44
-
45
- # Import necessary libraries
46
- # import matplotlib
47
- # import matplotlib.pyplot as plt
48
- import numpy as np
49
- import os
50
- import pandas as pd
51
- # import pathlib
52
- import random
53
- # import scanpy as sc
54
- # import seaborn as sns
55
- import torch
56
- import torch.nn as nn
57
- import torch.nn.functional as F
58
- # from argparse import Namespace
59
- from collections import Counter, OrderedDict
60
- from copy import deepcopy
61
- from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
62
- from esm.data import *
63
- from esm.model.esm2 import ESM2
64
- # from sklearn import preprocessing
65
- # from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
66
- # precision_recall_fscore_support,
67
- # precision_recall_curve, classification_report,
68
- # roc_auc_score, average_precision_score,
69
- # precision_score, recall_score, f1_score,
70
- # accuracy_score)
71
- # from sklearn.model_selection import StratifiedKFold
72
- # from sklearn.utils import class_weight
73
- # from scipy.stats import spearmanr, pearsonr
74
- from torch import nn
75
- from torch.nn import Linear
76
- from torch.nn.utils.rnn import pad_sequence
77
- from torch.utils.data import Dataset, DataLoader
78
- from tqdm import tqdm, trange
79
-
80
- # Set global variables
81
- # matplotlib.rcParams.update({'font.size': 7})
82
- seed = 19961231
83
- random.seed(seed)
84
- np.random.seed(seed)
85
- torch.manual_seed(seed)
86
- # torch.cuda.manual_seed(seed)
87
- # torch.backends.cudnn.deterministic = True
88
- # torch.backends.cudnn.benchmark = False
89
-
90
-
91
- global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, device, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
92
-
93
- epochs = 5
94
- layers = 6
95
- heads = 16
96
- embed_dim = 128
97
- batch_toks = 4096
98
- fc_node = 64
99
- dropout_prob = 0.5
100
- folds = 10
101
- repr_layers = [-1]
102
- include = ["mean"]
103
- truncate = True
104
- finetune = False
105
- return_contacts = False
106
- return_representation = False
107
-
108
- device = "cpu"
109
-
110
- global tok_to_idx, idx_to_tok, mask_toks_id
111
- alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
112
- assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
113
-
114
- # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
115
- tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
116
- idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
117
- # st.write(tok_to_idx)
118
- mask_toks_id = 8
119
-
120
- global w1, w2, w3
121
- w1, w2, w3 = 1, 1, 100
122
-
123
- class CNN_linear(nn.Module):
124
- def __init__(self):
125
- super(CNN_linear, self).__init__()
126
-
127
- self.esm2 = ESM2(num_layers = layers,
128
- embed_dim = embed_dim,
129
- attention_heads = heads,
130
- alphabet = alphabet)
131
-
132
- self.dropout = nn.Dropout(dropout_prob)
133
- self.relu = nn.ReLU()
134
- self.flatten = nn.Flatten()
135
- self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
136
- self.output = nn.Linear(in_features = fc_node, out_features = 2)
137
-
138
- def predict(self, tokens):
139
-
140
- x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
141
- x_cls = x["representations"][layers][:, 0]
142
-
143
- o = self.fc(x_cls)
144
- o = self.relu(o)
145
- o = self.dropout(o)
146
- o = self.output(o)
147
-
148
- y_prob = torch.softmax(o, dim = 1)
149
- y_pred = torch.argmax(y_prob, dim = 1)
150
-
151
- if transform_type:
152
- y_prob_transformed = prob_transform(y_prob[:,1])
153
- return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
154
- else:
155
- return y_prob[:,1], y_pred, x['logits'], o[:,1]
156
-
157
- def forward(self, x1, x2):
158
- logit_1, repr_1 = self.predict(x1)
159
- logit_2, repr_2 = self.predict(x2)
160
- return (logit_1, logit_2), (repr_1, repr_2)
161
-
162
- def prob_transform(prob, **kwargs): # Logits
163
- """
164
- Transforms probability values based on the specified method.
165
-
166
- :param prob: torch.Tensor, the input probabilities to be transformed
167
- :param transform_type: str, the type of transformation to be applied
168
- :param kwargs: additional parameters for transformations
169
- :return: torch.Tensor, transformed probabilities
170
- """
171
-
172
- if transform_type == 'sigmoid':
173
- x0 = kwget('x0', 0.5)
174
- k = kwget('k', 10.0)
175
- prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
176
-
177
- elif transform_type == 'logit':
178
- # Adding a small value to avoid log(0) and log(1)
179
- prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
180
-
181
- elif transform_type == 'power_law':
182
- gamma = kwget('gamma', 2.0)
183
- prob_transformed = torch.pow(prob, gamma)
184
-
185
- elif transform_type == 'tanh':
186
- k = kwget('k', 2.0)
187
- prob_transformed = torch.tanh(k * prob)
188
-
189
- return prob_transformed
190
-
191
- def random_replace(sequence, continuous_replace=False):
192
- if end_nt_position == -1: end_nt_position = len(sequence)
193
- if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
194
- # raise ValueError("Invalid start/end positions")
195
- st.write("Invalid start/end positions")
196
- start_nt_position, end_nt_position = 0, -1
197
-
198
- # 将序列切片成三部分:替换区域前、替换区域、替换区域后
199
- pre_segment = sequence[:start_nt_position]
200
- target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
201
- post_segment = sequence[end_nt_position + 1:]
202
-
203
- if not continuous_replace:
204
- # 随机替换目标片段的mlm_tok_num个位置
205
- indices = random.sample(range(len(target_segment)), mlm_tok_num)
206
- for idx in indices:
207
- target_segment[idx] = '*'
208
- else:
209
- # 在目标片段连续替换mlm_tok_num个位置
210
- max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
211
- if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
212
- return target_segment
213
- start_idx = random.randint(0, max_start_idx)
214
- for idx in range(start_idx, start_idx + mlm_tok_num):
215
- target_segment[idx] = '*'
216
-
217
- # 合并并返回最终的序列
218
- return ''.join([pre_segment] + target_segment + [post_segment])
219
-
220
-
221
- def mlm_seq(seq):
222
- seq_token, masked_sequence_token = [7],[7]
223
- seq_token += [tok_to_idx[token] for token in seq]
224
-
225
- masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
226
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
227
-
228
- return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
229
-
230
- def batch_mlm_seq(seq_list, continuous_replace = False):
231
- batch_seq = []
232
- batch_masked_seq = []
233
- batch_seq_token_list = []
234
- batch_masked_seq_token_list = []
235
-
236
- for i, seq in enumerate(seq_list):
237
- seq_token, masked_seq_token = [7], [7]
238
- seq_token += [tok_to_idx[token] for token in seq]
239
-
240
- masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
241
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
242
-
243
- batch_seq.append(seq)
244
- batch_masked_seq.append(masked_seq)
245
-
246
- batch_seq_token_list.append(seq_token)
247
- batch_masked_seq_token_list.append(masked_seq_token)
248
-
249
- return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
250
-
251
- def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
252
- # Only remain the AGCT logits
253
- esm_logits = esm_logits[:,:,3:7]
254
- # Get the predicted tokens using argmax
255
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
256
-
257
- batch_size, seq_len, vocab_size = esm_logits.size()
258
- if exclude_low_prob: min_prob = 1 / vocab_size
259
- # Initialize an empty list to store the recovered sequences
260
- recovered_sequences, recovered_toks = [], []
261
-
262
- for i in range(batch_size):
263
- recovered_sequence_i, recovered_tok_i = [], []
264
- for j in range(seq_len):
265
- if masked_toks[i][j] == 8:
266
- st.write(i,j)
267
- ### Sample M recovery sequences using the logits
268
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
269
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
270
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
271
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
272
-
273
- ### 有放回抽样
274
- max_retries = 5
275
- retries = 0
276
- success = False
277
-
278
- while retries < max_retries and not success:
279
- try:
280
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
281
- success = True # 设置成功标志
282
- except ValueError as e:
283
- retries += 1
284
- st.write(f"Attempt {retries} failed with error: {e}")
285
- if retries >= max_retries:
286
- st.write("Max retries reached. Skipping this iteration.")
287
-
288
- ### recovery to sequence
289
- if retries < max_retries:
290
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
291
- recovery_seq = deepcopy(list(masked_seqs[i]))
292
- recovery_tok = deepcopy(masked_toks[i])
293
-
294
- recovery_tok[j] = idx
295
- recovery_seq[j-1] = idx_to_tok[idx]
296
-
297
- recovered_tok_i.append(recovery_tok)
298
- recovered_sequence_i.append(''.join(recovery_seq))
299
-
300
- recovered_sequences.extend(recovered_sequence_i)
301
- recovered_toks.extend(recovered_tok_i)
302
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
303
-
304
- def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
305
- # Only remain the AGCT logits
306
- esm_logits = esm_logits[:,:,3:7]
307
- # Get the predicted tokens using argmax
308
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
309
-
310
- batch_size, seq_len, vocab_size = esm_logits.size()
311
- if exclude_low_prob: min_prob = 1 / vocab_size
312
- # Initialize an empty list to store the recovered sequences
313
- recovered_sequences, recovered_toks = [], []
314
-
315
- for i in range(batch_size):
316
- recovered_sequence_i, recovered_tok_i = [], []
317
- recovered_masked_num = 0
318
- for j in range(seq_len):
319
- if masked_toks[i][j] == 8:
320
- ### Sample M recovery sequences using the logits
321
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
322
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
323
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
324
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
325
-
326
- ### 有放回抽样
327
- max_retries = 5
328
- retries = 0
329
- success = False
330
-
331
- while retries < max_retries and not success:
332
- try:
333
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
334
- success = True # 设置成功标志
335
- except ValueError as e:
336
- retries += 1
337
- st.write(f"Attempt {retries} failed with error: {e}")
338
- if retries >= max_retries:
339
- st.write("Max retries reached. Skipping this iteration.")
340
-
341
- ### recovery to sequence
342
-
343
- if recovered_masked_num == 0:
344
- if retries < max_retries:
345
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
346
- recovery_seq = deepcopy(list(masked_seqs[i]))
347
- recovery_tok = deepcopy(masked_toks[i])
348
-
349
- recovery_tok[j] = idx
350
- recovery_seq[j-1] = idx_to_tok[idx]
351
-
352
- recovered_tok_i.append(recovery_tok)
353
- recovered_sequence_i.append(''.join(recovery_seq))
354
-
355
- elif recovered_masked_num > 0:
356
- if retries < max_retries:
357
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
358
- for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
359
-
360
- recovery_seq_temp = list(recovery_seq)
361
- recovery_tok[j] = idx
362
- recovery_seq_temp[j-1] = idx_to_tok[idx]
363
-
364
- recovered_tok_i.append(recovery_tok)
365
- recovered_sequence_i.append(''.join(recovery_seq_temp))
366
-
367
- recovered_masked_num += 1
368
- recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
369
- recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
370
- recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
371
-
372
- recovered_sequences.extend(recovered_sequence_i)
373
- recovered_toks.extend(recovered_tok_i)
374
-
375
- recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
376
-
377
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
378
-
379
- def mismatched_positions(s1, s2):
380
- # 这个函数假定两个字符串的长度相同。
381
- """Return the number of positions where two strings differ."""
382
-
383
- # The number of mismatches will be the sum of positions where characters are not the same
384
- return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
385
-
386
- def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
387
- seen = {}
388
- unique_seqs = []
389
- unique_probs = []
390
- unique_logits = []
391
-
392
- for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
393
- if seq not in seen:
394
- unique_seqs.append(seq)
395
- unique_probs.append(prob)
396
- unique_logits.append(logit)
397
- seen[seq] = True
398
-
399
- return unique_seqs, unique_probs, unique_logits
400
-
401
- def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
402
- seen = {}
403
- unique_seqs = []
404
- unique_probs = []
405
-
406
- for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
407
- if seq not in seen:
408
- unique_seqs.append(seq)
409
- unique_probs.append(prob)
410
- seen[seq] = True
411
-
412
- return unique_seqs, unique_probs
413
-
414
- def mutated_seq(wt_seq, wt_label):
415
- wt_seq = '!'+ wt_seq
416
- wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
417
- wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
418
- st.write('Wild Type: Length')
419
- st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
420
- st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
421
- st.write('sdafdasWild Type: Length')
422
- # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
423
- # pbar = tqdm(total=n_mut)
424
- mutated_seqs = []
425
- i = 1
426
- # pbar = st.progress(i, text="mutated number of sequence")
427
- while i <= n_mut:
428
- if i == 1: seeds_ep = [wt_seq[1:]]
429
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
430
- for seed in seeds_ep:
431
- seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
432
-
433
- seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
434
- _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
435
- mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
436
- mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
437
-
438
- ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
439
- filtered_mut_seqs = []
440
- filtered_mut_probs = []
441
- filtered_mut_logits = []
442
- if mut_by_prob:
443
- for z in range(len(mut_seqs)):
444
- if mutate2stronger:
445
- if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
446
- filtered_mut_seqs.append(mut_seqs[z])
447
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
448
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
449
- else:
450
- if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
451
- filtered_mut_seqs.append(mut_seqs[z])
452
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
453
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
454
- else:
455
- for z in range(len(mut_seqs)):
456
- if mutate2stronger:
457
- if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
458
- filtered_mut_seqs.append(mut_seqs[z])
459
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
460
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
461
- else:
462
- if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
463
- filtered_mut_seqs.append(mut_seqs[z])
464
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
465
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
466
-
467
-
468
-
469
- ### Save
470
- seeds_next_ep.extend(filtered_mut_seqs)
471
- seeds_probs_next_ep.extend(filtered_mut_probs)
472
- seeds_logits_next_ep.extend(filtered_mut_logits)
473
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
474
-
475
- ### Sampling based on prob
476
- if len(seeds_next_ep) > n_sampling_designs_ep:
477
- seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
478
- seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
479
-
480
- seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
481
- seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
482
- seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
483
- seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
484
-
485
- mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
486
-
487
- seeds_ep = seeds_next_ep
488
- i += 1
489
- # pbar.update(1)
490
- # pbar.progress(i/n_mut, text="Mutating")
491
- # pbar.close()
492
- # st.success('Done', icon="✅")
493
- mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
494
- mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
495
- mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
496
- return mutated_seqs
497
-
498
- def read_raw(raw_input):
499
- ids = []
500
- sequences = []
501
-
502
- file = StringIO(raw_input)
503
- for record in SeqIO.parse(file, "fasta"):
504
-
505
- # 检查序列是否只包含A, G, C, T
506
- sequence = str(record.seq.back_transcribe()).upper()
507
- if not set(sequence).issubset(set("AGCT")):
508
- st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
509
- continue
510
-
511
- # 将符合条件的序列添加到列表中
512
- ids.append(record.id)
513
- sequences.append(sequence)
514
-
515
- return ids, sequences
516
-
517
- def predict_raw(raw_input):
518
- model.eval()
519
- # st.write(model)
520
- # st.write('====Parse Input====')
521
- ids, seqs = read_raw(raw_input)
522
-
523
- # st.write('====Predict====')
524
- res_pd = pd.DataFrame()
525
- for wt_seq, wt_id in zip(seqs, ids):
526
- # try:
527
- st.write(wt_id, wt_seq)
528
- res = mutated_seq(wt_seq, wt_id)
529
- st.write(res)
530
- res_pd.append(res)
531
- # except:
532
- # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
533
- st.write(res_pd)
534
- return res_pd
535
-
536
- # Run
537
- if st.button("Predict and Mutate"):
538
- if uploaded:
539
- result = predict_raw(uploaded.getvalue().decode())
540
- else:
541
- result = predict_raw(seq)
542
-
543
- result_file = result.to_csv(index=False)
544
- st.download_button("Download", result_file, file_name=output_filename+".csv")
545
- st.dataframe(result)
546
-
547
-
548
-
549
-
550
-
551
-