a96123155 commited on
Commit
b2acc74
·
1 Parent(s): 2325b92
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +0 -520
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py DELETED
@@ -1,520 +0,0 @@
1
- import streamlit as st
2
- from io import StringIO
3
- from Bio import SeqIO
4
-
5
- import numpy as np
6
- import os
7
- import pandas as pd
8
- import random
9
- import torch
10
- import torch.nn as nn
11
- import torch.nn.functional as F
12
- from collections import Counter, OrderedDict
13
- from copy import deepcopy
14
- from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
15
- from esm.data import *
16
- from esm.model.esm2 import ESM2
17
- from torch import nn
18
- from torch.nn import Linear
19
- from torch.nn.utils.rnn import pad_sequence
20
- from torch.utils.data import Dataset, DataLoader
21
- seed = 19961231
22
- random.seed(seed)
23
- np.random.seed(seed)
24
- torch.manual_seed(seed)
25
-
26
-
27
- st.title("IRES-LM prediction and mutation")
28
-
29
- # Input sequence
30
- st.subheader("Input sequence")
31
-
32
- seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
33
- st.subheader("Upload sequence file")
34
- uploaded = st.file_uploader("Sequence file in FASTA format")
35
-
36
- # augments
37
- global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
38
- output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
39
- start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
40
- end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
41
- mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
42
- transform_type = st.selectbox("Type of probability transformation",
43
- ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
44
- index=2)
45
- mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
46
- n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
47
- n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
48
- n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
49
- n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
50
- mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
51
- if not mut_by_prob and transform_type != '':
52
- st.write("--transform_type must be '' when --mut_by_prob is False")
53
- transform_type = ''
54
- st.write(output_filename,start_nt_position,end_nt_position,mut_by_prob,transform_type,mlm_tok_num,n_mut,n_designs_ep,n_sampling_designs_ep,n_mlm_recovery_sampling,mutate2stronger)
55
-
56
- global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
57
-
58
- epochs = 5
59
- layers = 6
60
- heads = 16
61
- embed_dim = 128
62
- batch_toks = 4096
63
- fc_node = 64
64
- dropout_prob = 0.5
65
- folds = 10
66
- repr_layers = [-1]
67
- include = ["mean"]
68
- truncate = True
69
- finetune = False
70
- return_contacts = False
71
- return_representation = False
72
-
73
- global tok_to_idx, idx_to_tok, mask_toks_id
74
- alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
75
- assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
76
-
77
- # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
78
- tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
79
- idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
80
- # st.write(tok_to_idx)
81
- mask_toks_id = 8
82
-
83
- global w1, w2, w3
84
- w1, w2, w3 = 1, 1, 100
85
-
86
- class CNN_linear(nn.Module):
87
- def __init__(self):
88
- super(CNN_linear, self).__init__()
89
-
90
- self.esm2 = ESM2(num_layers = layers,
91
- embed_dim = embed_dim,
92
- attention_heads = heads,
93
- alphabet = alphabet)
94
-
95
- self.dropout = nn.Dropout(dropout_prob)
96
- self.relu = nn.ReLU()
97
- self.flatten = nn.Flatten()
98
- self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
99
- self.output = nn.Linear(in_features = fc_node, out_features = 2)
100
-
101
- def predict(self, tokens):
102
-
103
- x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
104
- x_cls = x["representations"][layers][:, 0]
105
-
106
- o = self.fc(x_cls)
107
- o = self.relu(o)
108
- o = self.dropout(o)
109
- o = self.output(o)
110
-
111
- y_prob = torch.softmax(o, dim = 1)
112
- y_pred = torch.argmax(y_prob, dim = 1)
113
-
114
- if transform_type:
115
- y_prob_transformed = prob_transform(y_prob[:,1])
116
- return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
117
- else:
118
- return y_prob[:,1], y_pred, x['logits'], o[:,1]
119
-
120
- def forward(self, x1, x2):
121
- logit_1, repr_1 = self.predict(x1)
122
- logit_2, repr_2 = self.predict(x2)
123
- return (logit_1, logit_2), (repr_1, repr_2)
124
-
125
-
126
- def prob_transform(prob, **kwargs): # Logits
127
- """
128
- Transforms probability values based on the specified method.
129
-
130
- :param prob: torch.Tensor, the input probabilities to be transformed
131
- :param transform_type: str, the type of transformation to be applied
132
- :param kwargs: additional parameters for transformations
133
- :return: torch.Tensor, transformed probabilities
134
- """
135
-
136
- if transform_type == 'sigmoid':
137
- x0 = kwget('x0', 0.5)
138
- k = kwget('k', 10.0)
139
- prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
140
-
141
- elif transform_type == 'logit':
142
- # Adding a small value to avoid log(0) and log(1)
143
- prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
144
-
145
- elif transform_type == 'power_law':
146
- gamma = kwget('gamma', 2.0)
147
- prob_transformed = torch.pow(prob, gamma)
148
-
149
- elif transform_type == 'tanh':
150
- k = kwget('k', 2.0)
151
- prob_transformed = torch.tanh(k * prob)
152
-
153
- return prob_transformed
154
-
155
- def random_replace(sequence, continuous_replace=False):
156
- st.write('----start_nt_position=', start_nt_position)
157
- if end_nt_position == -1: end_nt_position = len(wt_seq)
158
- if start_nt_position < 0 or end_nt_position >= len(sequence) or start_nt_position > end_nt_position:
159
- # raise ValueError("Invalid start/end positions")
160
- st.write("Invalid start/end positions")
161
- start_nt_position, end_nt_position = 0, len(sequence)
162
-
163
- # 将序列切片成三部分:替换区域前、替换区域、替换区域后
164
- pre_segment = sequence[:start_nt_position]
165
- target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
166
- post_segment = sequence[end_nt_position + 1:]
167
-
168
- if not continuous_replace:
169
- # 随机替换目标片段的mlm_tok_num个位置
170
- indices = random.sample(range(len(target_segment)), mlm_tok_num)
171
- for idx in indices:
172
- target_segment[idx] = '*'
173
- else:
174
- # 在目标片段连续替换mlm_tok_num个位置
175
- max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
176
- if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
177
- return target_segment
178
- start_idx = random.randint(0, max_start_idx)
179
- for idx in range(start_idx, start_idx + mlm_tok_num):
180
- target_segment[idx] = '*'
181
-
182
- # 合并并返回最终的序列
183
- return ''.join([pre_segment] + target_segment + [post_segment])
184
-
185
-
186
- def mlm_seq(seq):
187
- seq_token, masked_sequence_token = [7],[7]
188
- seq_token += [tok_to_idx[token] for token in seq]
189
-
190
- masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
191
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
192
-
193
- return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
194
-
195
- def batch_mlm_seq(seq_list, continuous_replace = False):
196
- batch_seq = []
197
- batch_masked_seq = []
198
- batch_seq_token_list = []
199
- batch_masked_seq_token_list = []
200
-
201
- for i, seq in enumerate(seq_list):
202
- seq_token, masked_seq_token = [7], [7]
203
- seq_token += [tok_to_idx[token] for token in seq]
204
-
205
- masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
206
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
207
-
208
- batch_seq.append(seq)
209
- batch_masked_seq.append(masked_seq)
210
-
211
- batch_seq_token_list.append(seq_token)
212
- batch_masked_seq_token_list.append(masked_seq_token)
213
-
214
- return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
215
-
216
- def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
217
- # Only remain the AGCT logits
218
- esm_logits = esm_logits[:,:,3:7]
219
- # Get the predicted tokens using argmax
220
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
221
-
222
- batch_size, seq_len, vocab_size = esm_logits.size()
223
- if exclude_low_prob: min_prob = 1 / vocab_size
224
- # Initialize an empty list to store the recovered sequences
225
- recovered_sequences, recovered_toks = [], []
226
-
227
- for i in range(batch_size):
228
- recovered_sequence_i, recovered_tok_i = [], []
229
- for j in range(seq_len):
230
- if masked_toks[i][j] == 8:
231
- st.write(i,j)
232
- ### Sample M recovery sequences using the logits
233
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
234
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
235
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
236
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
237
-
238
- ### 有放回抽样
239
- max_retries = 5
240
- retries = 0
241
- success = False
242
-
243
- while retries < max_retries and not success:
244
- try:
245
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
246
- success = True # 设置成功标志
247
- except ValueError as e:
248
- retries += 1
249
- st.write(f"Attempt {retries} failed with error: {e}")
250
- if retries >= max_retries:
251
- st.write("Max retries reached. Skipping this iteration.")
252
-
253
- ### recovery to sequence
254
- if retries < max_retries:
255
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
256
- recovery_seq = deepcopy(list(masked_seqs[i]))
257
- recovery_tok = deepcopy(masked_toks[i])
258
-
259
- recovery_tok[j] = idx
260
- recovery_seq[j-1] = idx_to_tok[idx]
261
-
262
- recovered_tok_i.append(recovery_tok)
263
- recovered_sequence_i.append(''.join(recovery_seq))
264
-
265
- recovered_sequences.extend(recovered_sequence_i)
266
- recovered_toks.extend(recovered_tok_i)
267
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
268
-
269
- def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
270
- # Only remain the AGCT logits
271
- esm_logits = esm_logits[:,:,3:7]
272
- # Get the predicted tokens using argmax
273
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
274
-
275
- batch_size, seq_len, vocab_size = esm_logits.size()
276
- if exclude_low_prob: min_prob = 1 / vocab_size
277
- # Initialize an empty list to store the recovered sequences
278
- recovered_sequences, recovered_toks = [], []
279
-
280
- for i in range(batch_size):
281
- recovered_sequence_i, recovered_tok_i = [], []
282
- recovered_masked_num = 0
283
- for j in range(seq_len):
284
- if masked_toks[i][j] == 8:
285
- ### Sample M recovery sequences using the logits
286
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
287
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
288
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
289
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
290
-
291
- ### 有放回抽样
292
- max_retries = 5
293
- retries = 0
294
- success = False
295
-
296
- while retries < max_retries and not success:
297
- try:
298
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
299
- success = True # 设置成功标志
300
- except ValueError as e:
301
- retries += 1
302
- st.write(f"Attempt {retries} failed with error: {e}")
303
- if retries >= max_retries:
304
- st.write("Max retries reached. Skipping this iteration.")
305
-
306
- ### recovery to sequence
307
-
308
- if recovered_masked_num == 0:
309
- if retries < max_retries:
310
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
311
- recovery_seq = deepcopy(list(masked_seqs[i]))
312
- recovery_tok = deepcopy(masked_toks[i])
313
-
314
- recovery_tok[j] = idx
315
- recovery_seq[j-1] = idx_to_tok[idx]
316
-
317
- recovered_tok_i.append(recovery_tok)
318
- recovered_sequence_i.append(''.join(recovery_seq))
319
-
320
- elif recovered_masked_num > 0:
321
- if retries < max_retries:
322
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
323
- for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
324
-
325
- recovery_seq_temp = list(recovery_seq)
326
- recovery_tok[j] = idx
327
- recovery_seq_temp[j-1] = idx_to_tok[idx]
328
-
329
- recovered_tok_i.append(recovery_tok)
330
- recovered_sequence_i.append(''.join(recovery_seq_temp))
331
-
332
- recovered_masked_num += 1
333
- recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
334
- recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
335
- recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
336
-
337
- recovered_sequences.extend(recovered_sequence_i)
338
- recovered_toks.extend(recovered_tok_i)
339
-
340
- recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
341
-
342
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
343
-
344
- def mismatched_positions(s1, s2):
345
- # 这个函数假定两个字符串的长度相同。
346
- """Return the number of positions where two strings differ."""
347
-
348
- # The number of mismatches will be the sum of positions where characters are not the same
349
- return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
350
-
351
- def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
352
- seen = {}
353
- unique_seqs = []
354
- unique_probs = []
355
- unique_logits = []
356
-
357
- for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
358
- if seq not in seen:
359
- unique_seqs.append(seq)
360
- unique_probs.append(prob)
361
- unique_logits.append(logit)
362
- seen[seq] = True
363
-
364
- return unique_seqs, unique_probs, unique_logits
365
-
366
- def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
367
- seen = {}
368
- unique_seqs = []
369
- unique_probs = []
370
-
371
- for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
372
- if seq not in seen:
373
- unique_seqs.append(seq)
374
- unique_probs.append(prob)
375
- seen[seq] = True
376
-
377
- return unique_seqs, unique_probs
378
-
379
- def mutated_seq(wt_seq, wt_label):
380
- wt_seq = '!'+ wt_seq
381
- wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
382
- wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
383
-
384
- st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
385
- st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
386
-
387
- # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
388
- # pbar = tqdm(total=n_mut)
389
- mutated_seqs = []
390
- i = 1
391
- # pbar = st.progress(i, text="mutated number of sequence")
392
- while i <= n_mut:
393
- if i == 1: seeds_ep = [wt_seq[1:]]
394
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
395
- for seed in seeds_ep:
396
- seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
397
-
398
- seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
399
- _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
400
- mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
401
- mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
402
-
403
- ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
404
- filtered_mut_seqs = []
405
- filtered_mut_probs = []
406
- filtered_mut_logits = []
407
- if mut_by_prob:
408
- for z in range(len(mut_seqs)):
409
- if mutate2stronger:
410
- if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
411
- filtered_mut_seqs.append(mut_seqs[z])
412
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
413
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
414
- else:
415
- if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
416
- filtered_mut_seqs.append(mut_seqs[z])
417
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
418
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
419
- else:
420
- for z in range(len(mut_seqs)):
421
- if mutate2stronger:
422
- if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
423
- filtered_mut_seqs.append(mut_seqs[z])
424
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
425
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
426
- else:
427
- if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
428
- filtered_mut_seqs.append(mut_seqs[z])
429
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
430
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
431
-
432
-
433
-
434
- ### Save
435
- seeds_next_ep.extend(filtered_mut_seqs)
436
- seeds_probs_next_ep.extend(filtered_mut_probs)
437
- seeds_logits_next_ep.extend(filtered_mut_logits)
438
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
439
-
440
- ### Sampling based on prob
441
- if len(seeds_next_ep) > n_sampling_designs_ep:
442
- seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
443
- seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
444
-
445
- seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
446
- seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
447
- seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
448
- seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
449
-
450
- mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
451
-
452
- seeds_ep = seeds_next_ep
453
- i += 1
454
- # pbar.update(1)
455
- # pbar.progress(i/n_mut, text="Mutating")
456
- # pbar.close()
457
- # st.success('Done', icon="✅")
458
- mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
459
- mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
460
- mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
461
- return mutated_seqs
462
-
463
- def read_raw(raw_input):
464
- ids = []
465
- sequences = []
466
-
467
- file = StringIO(raw_input)
468
- for record in SeqIO.parse(file, "fasta"):
469
-
470
- # 检查序列是否只包含A, G, C, T
471
- sequence = str(record.seq.back_transcribe()).upper()
472
- if not set(sequence).issubset(set("AGCT")):
473
- st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
474
- continue
475
-
476
- # 将符合条件的序列添加到列表中
477
- ids.append(record.id)
478
- sequences.append(sequence)
479
-
480
- return ids, sequences
481
-
482
- def predict_raw(raw_input):
483
- model.eval()
484
- # st.write(model)
485
- # st.write('====Parse Input====')
486
- ids, seqs = read_raw(raw_input)
487
-
488
- # st.write('====Predict====')
489
- res_pd = pd.DataFrame()
490
- for wt_seq, wt_id in zip(seqs, ids):
491
- # try:
492
- res = mutated_seq(wt_seq, wt_id)
493
- res_pd.append(res)
494
- # except:
495
- # st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
496
- st.write(res_pd)
497
- return res_pd
498
-
499
- global model, device
500
- device = "cpu"
501
- state_dict = torch.load('model.pt', map_location=torch.device(device))
502
- new_state_dict = OrderedDict()
503
-
504
- for k, v in state_dict.items():
505
- name = k.replace('module.','')
506
- new_state_dict[name] = v
507
-
508
- model = CNN_linear().to(device)
509
- model.load_state_dict(new_state_dict, strict = False)
510
-
511
- # Run
512
- if st.button("Predict and Mutate"):
513
- if uploaded:
514
- result = predict_raw(uploaded.getvalue().decode())
515
- else:
516
- result = predict_raw(seq)
517
-
518
- result_file = result.to_csv(index=False)
519
- st.download_button("Download", result_file, file_name=output_filename+".csv")
520
- st.dataframe(result)