yashonwu
add captioning
9bf9e42
raw
history blame
7.96 kB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
from . import misc as utils
from eval_utils import getCOCO
from .div_utils import compute_div_n, compute_global_div_n
import sys
try:
sys.path.append("coco-caption")
annFile = 'coco-caption/annotations/captions_val2014.json'
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
from pycocoevalcap.eval_spice import COCOEvalCapSpice
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
from pycocoevalcap.bleu.bleu import Bleu
sys.path.append("cider")
from pyciderevalcap.cider.cider import Cider
except:
print('Warning: requirements for eval_multi not satisfied')
def eval_allspice(dataset, preds_n, model_id, split):
coco = getCOCO(dataset)
valids = coco.getImgIds()
capsById = {}
for d in preds_n:
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
# filter results to only those in MSCOCO validation set (will be about a third)
preds_filt_n = [p for p in preds_n if p['image_id'] in valids]
print('using %d/%d predictions_n' % (len(preds_filt_n), len(preds_n)))
cache_path_n = os.path.join('eval_results/', model_id + '_' + split + '_n.json')
json.dump(preds_filt_n, open(cache_path_n, 'w')) # serialize to temporary json file. Sigh, COCO API...
# Eval AllSPICE
cocoRes_n = coco.loadRes(cache_path_n)
cocoEvalAllSPICE = COCOEvalCapSpice(coco, cocoRes_n)
cocoEvalAllSPICE.params['image_id'] = cocoRes_n.getImgIds()
cocoEvalAllSPICE.evaluate()
out = {}
for metric, score in cocoEvalAllSPICE.eval.items():
out['All'+metric] = score
imgToEvalAllSPICE = cocoEvalAllSPICE.imgToEval
# collect SPICE_sub_score
for k in list(imgToEvalAllSPICE.values())[0]['SPICE'].keys():
if k != 'All':
out['AllSPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEvalAllSPICE.values()])
out['AllSPICE_'+k] = (out['AllSPICE_'+k][out['AllSPICE_'+k]==out['AllSPICE_'+k]]).mean()
for p in preds_filt_n:
image_id, caption = p['image_id'], p['caption']
imgToEvalAllSPICE[image_id]['caption'] = capsById[image_id]
return {'overall': out, 'imgToEvalAllSPICE': imgToEvalAllSPICE}
def eval_oracle(dataset, preds_n, model_id, split):
cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json')
coco = getCOCO(dataset)
valids = coco.getImgIds()
capsById = {}
for d in preds_n:
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
sample_n = capsById[list(capsById.keys())[0]]
for i in range(len(capsById[list(capsById.keys())[0]])):
preds = [_[i] for _ in capsById.values()]
json.dump(preds, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...
cocoRes = coco.loadRes(cache_path)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
imgToEval = cocoEval.imgToEval
for img_id in capsById.keys():
tmp = imgToEval[img_id]
for k in tmp['SPICE'].keys():
if k != 'All':
tmp['SPICE_'+k] = tmp['SPICE'][k]['f']
if tmp['SPICE_'+k] != tmp['SPICE_'+k]: # nan
tmp['SPICE_'+k] = -100
tmp['SPICE'] = tmp['SPICE']['All']['f']
if tmp['SPICE'] != tmp['SPICE']: tmp['SPICE'] = -100
capsById[img_id][i]['scores'] = imgToEval[img_id]
out = {'overall': {}, 'ImgToEval': {}}
for img_id in capsById.keys():
out['ImgToEval'][img_id] = {}
for metric in capsById[img_id][0]['scores'].keys():
if metric == 'image_id': continue
out['ImgToEval'][img_id]['oracle_'+metric] = max([_['scores'][metric] for _ in capsById[img_id]])
out['ImgToEval'][img_id]['avg_'+metric] = sum([_['scores'][metric] for _ in capsById[img_id]]) / len(capsById[img_id])
out['ImgToEval'][img_id]['captions'] = capsById[img_id]
for metric in list(out['ImgToEval'].values())[0].keys():
if metric == 'captions':
continue
tmp = np.array([_[metric] for _ in out['ImgToEval'].values()])
tmp = tmp[tmp!=-100]
out['overall'][metric] = tmp.mean()
return out
def eval_div_stats(dataset, preds_n, model_id, split):
tokenizer = PTBTokenizer()
capsById = {}
for i, d in enumerate(preds_n):
d['id'] = i
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
n_caps_perimg = len(capsById[list(capsById.keys())[0]])
print(n_caps_perimg)
_capsById = capsById # save the untokenized version
capsById = tokenizer.tokenize(capsById)
div_1, adiv_1 = compute_div_n(capsById,1)
div_2, adiv_2 = compute_div_n(capsById,2)
globdiv_1, _= compute_global_div_n(capsById,1)
print('Diversity Statistics are as follows: \n Div1: %.2f, Div2: %.2f, gDiv1: %d\n'%(div_1,div_2, globdiv_1))
# compute mbleu
scorer = Bleu(4)
all_scrs = []
scrperimg = np.zeros((n_caps_perimg, len(capsById)))
for i in range(n_caps_perimg):
tempRefsById = {}
candsById = {}
for k in capsById:
tempRefsById[k] = capsById[k][:i] + capsById[k][i+1:]
candsById[k] = [capsById[k][i]]
score, scores = scorer.compute_score(tempRefsById, candsById)
all_scrs.append(score)
scrperimg[i,:] = scores[1]
all_scrs = np.array(all_scrs)
out = {}
out['overall'] = {'Div1': div_1, 'Div2': div_2, 'gDiv1': globdiv_1}
for k, score in zip(range(4), all_scrs.mean(axis=0).tolist()):
out['overall'].update({'mBLeu_%d'%(k+1): score})
imgToEval = {}
for i,imgid in enumerate(capsById.keys()):
imgToEval[imgid] = {'mBleu_2' : scrperimg[:,i].mean()}
imgToEval[imgid]['individuals'] = []
for j, d in enumerate(_capsById[imgid]):
imgToEval[imgid]['individuals'].append(preds_n[d['id']])
imgToEval[imgid]['individuals'][-1]['mBleu_2'] = scrperimg[j,i]
out['ImgToEval'] = imgToEval
print('Mean mutual Bleu scores on this set is:\nmBLeu_1, mBLeu_2, mBLeu_3, mBLeu_4')
print(all_scrs.mean(axis=0))
return out
def eval_self_cider(dataset, preds_n, model_id, split):
cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json')
coco = getCOCO(dataset)
valids = coco.getImgIds()
# Get Cider_scorer
Cider_scorer = Cider(df='corpus')
tokenizer = PTBTokenizer()
gts = {}
for imgId in valids:
gts[imgId] = coco.imgToAnns[imgId]
gts = tokenizer.tokenize(gts)
for imgId in valids:
Cider_scorer.cider_scorer += (None, gts[imgId])
Cider_scorer.cider_scorer.compute_doc_freq()
Cider_scorer.cider_scorer.ref_len = np.log(float(len(Cider_scorer.cider_scorer.crefs)))
# Prepare captions
capsById = {}
for d in preds_n:
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
capsById = tokenizer.tokenize(capsById)
imgIds = list(capsById.keys())
scores = Cider_scorer.my_self_cider([capsById[_] for _ in imgIds])
def get_div(eigvals):
eigvals = np.clip(eigvals, 0, None)
return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals))
sc_scores = [get_div(np.linalg.eigvalsh(_/10)) for _ in scores]
score = np.mean(np.array(sc_scores))
imgToEval = {}
for i, image_id in enumerate(imgIds):
imgToEval[image_id] = {'self_cider': sc_scores[i], 'self_cider_mat': scores[i].tolist()}
return {'overall': {'self_cider': score}, 'imgToEval': imgToEval}
return score