Spaces:
Sleeping
Sleeping
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import json | |
from json import encoder | |
import random | |
import string | |
import time | |
import os | |
import sys | |
from . import misc as utils | |
from eval_utils import getCOCO | |
from .div_utils import compute_div_n, compute_global_div_n | |
import sys | |
try: | |
sys.path.append("coco-caption") | |
annFile = 'coco-caption/annotations/captions_val2014.json' | |
from pycocotools.coco import COCO | |
from pycocoevalcap.eval import COCOEvalCap | |
from pycocoevalcap.eval_spice import COCOEvalCapSpice | |
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer | |
from pycocoevalcap.bleu.bleu import Bleu | |
sys.path.append("cider") | |
from pyciderevalcap.cider.cider import Cider | |
except: | |
print('Warning: requirements for eval_multi not satisfied') | |
def eval_allspice(dataset, preds_n, model_id, split): | |
coco = getCOCO(dataset) | |
valids = coco.getImgIds() | |
capsById = {} | |
for d in preds_n: | |
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] | |
# filter results to only those in MSCOCO validation set (will be about a third) | |
preds_filt_n = [p for p in preds_n if p['image_id'] in valids] | |
print('using %d/%d predictions_n' % (len(preds_filt_n), len(preds_n))) | |
cache_path_n = os.path.join('eval_results/', model_id + '_' + split + '_n.json') | |
json.dump(preds_filt_n, open(cache_path_n, 'w')) # serialize to temporary json file. Sigh, COCO API... | |
# Eval AllSPICE | |
cocoRes_n = coco.loadRes(cache_path_n) | |
cocoEvalAllSPICE = COCOEvalCapSpice(coco, cocoRes_n) | |
cocoEvalAllSPICE.params['image_id'] = cocoRes_n.getImgIds() | |
cocoEvalAllSPICE.evaluate() | |
out = {} | |
for metric, score in cocoEvalAllSPICE.eval.items(): | |
out['All'+metric] = score | |
imgToEvalAllSPICE = cocoEvalAllSPICE.imgToEval | |
# collect SPICE_sub_score | |
for k in list(imgToEvalAllSPICE.values())[0]['SPICE'].keys(): | |
if k != 'All': | |
out['AllSPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEvalAllSPICE.values()]) | |
out['AllSPICE_'+k] = (out['AllSPICE_'+k][out['AllSPICE_'+k]==out['AllSPICE_'+k]]).mean() | |
for p in preds_filt_n: | |
image_id, caption = p['image_id'], p['caption'] | |
imgToEvalAllSPICE[image_id]['caption'] = capsById[image_id] | |
return {'overall': out, 'imgToEvalAllSPICE': imgToEvalAllSPICE} | |
def eval_oracle(dataset, preds_n, model_id, split): | |
cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json') | |
coco = getCOCO(dataset) | |
valids = coco.getImgIds() | |
capsById = {} | |
for d in preds_n: | |
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] | |
sample_n = capsById[list(capsById.keys())[0]] | |
for i in range(len(capsById[list(capsById.keys())[0]])): | |
preds = [_[i] for _ in capsById.values()] | |
json.dump(preds, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... | |
cocoRes = coco.loadRes(cache_path) | |
cocoEval = COCOEvalCap(coco, cocoRes) | |
cocoEval.params['image_id'] = cocoRes.getImgIds() | |
cocoEval.evaluate() | |
imgToEval = cocoEval.imgToEval | |
for img_id in capsById.keys(): | |
tmp = imgToEval[img_id] | |
for k in tmp['SPICE'].keys(): | |
if k != 'All': | |
tmp['SPICE_'+k] = tmp['SPICE'][k]['f'] | |
if tmp['SPICE_'+k] != tmp['SPICE_'+k]: # nan | |
tmp['SPICE_'+k] = -100 | |
tmp['SPICE'] = tmp['SPICE']['All']['f'] | |
if tmp['SPICE'] != tmp['SPICE']: tmp['SPICE'] = -100 | |
capsById[img_id][i]['scores'] = imgToEval[img_id] | |
out = {'overall': {}, 'ImgToEval': {}} | |
for img_id in capsById.keys(): | |
out['ImgToEval'][img_id] = {} | |
for metric in capsById[img_id][0]['scores'].keys(): | |
if metric == 'image_id': continue | |
out['ImgToEval'][img_id]['oracle_'+metric] = max([_['scores'][metric] for _ in capsById[img_id]]) | |
out['ImgToEval'][img_id]['avg_'+metric] = sum([_['scores'][metric] for _ in capsById[img_id]]) / len(capsById[img_id]) | |
out['ImgToEval'][img_id]['captions'] = capsById[img_id] | |
for metric in list(out['ImgToEval'].values())[0].keys(): | |
if metric == 'captions': | |
continue | |
tmp = np.array([_[metric] for _ in out['ImgToEval'].values()]) | |
tmp = tmp[tmp!=-100] | |
out['overall'][metric] = tmp.mean() | |
return out | |
def eval_div_stats(dataset, preds_n, model_id, split): | |
tokenizer = PTBTokenizer() | |
capsById = {} | |
for i, d in enumerate(preds_n): | |
d['id'] = i | |
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] | |
n_caps_perimg = len(capsById[list(capsById.keys())[0]]) | |
print(n_caps_perimg) | |
_capsById = capsById # save the untokenized version | |
capsById = tokenizer.tokenize(capsById) | |
div_1, adiv_1 = compute_div_n(capsById,1) | |
div_2, adiv_2 = compute_div_n(capsById,2) | |
globdiv_1, _= compute_global_div_n(capsById,1) | |
print('Diversity Statistics are as follows: \n Div1: %.2f, Div2: %.2f, gDiv1: %d\n'%(div_1,div_2, globdiv_1)) | |
# compute mbleu | |
scorer = Bleu(4) | |
all_scrs = [] | |
scrperimg = np.zeros((n_caps_perimg, len(capsById))) | |
for i in range(n_caps_perimg): | |
tempRefsById = {} | |
candsById = {} | |
for k in capsById: | |
tempRefsById[k] = capsById[k][:i] + capsById[k][i+1:] | |
candsById[k] = [capsById[k][i]] | |
score, scores = scorer.compute_score(tempRefsById, candsById) | |
all_scrs.append(score) | |
scrperimg[i,:] = scores[1] | |
all_scrs = np.array(all_scrs) | |
out = {} | |
out['overall'] = {'Div1': div_1, 'Div2': div_2, 'gDiv1': globdiv_1} | |
for k, score in zip(range(4), all_scrs.mean(axis=0).tolist()): | |
out['overall'].update({'mBLeu_%d'%(k+1): score}) | |
imgToEval = {} | |
for i,imgid in enumerate(capsById.keys()): | |
imgToEval[imgid] = {'mBleu_2' : scrperimg[:,i].mean()} | |
imgToEval[imgid]['individuals'] = [] | |
for j, d in enumerate(_capsById[imgid]): | |
imgToEval[imgid]['individuals'].append(preds_n[d['id']]) | |
imgToEval[imgid]['individuals'][-1]['mBleu_2'] = scrperimg[j,i] | |
out['ImgToEval'] = imgToEval | |
print('Mean mutual Bleu scores on this set is:\nmBLeu_1, mBLeu_2, mBLeu_3, mBLeu_4') | |
print(all_scrs.mean(axis=0)) | |
return out | |
def eval_self_cider(dataset, preds_n, model_id, split): | |
cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json') | |
coco = getCOCO(dataset) | |
valids = coco.getImgIds() | |
# Get Cider_scorer | |
Cider_scorer = Cider(df='corpus') | |
tokenizer = PTBTokenizer() | |
gts = {} | |
for imgId in valids: | |
gts[imgId] = coco.imgToAnns[imgId] | |
gts = tokenizer.tokenize(gts) | |
for imgId in valids: | |
Cider_scorer.cider_scorer += (None, gts[imgId]) | |
Cider_scorer.cider_scorer.compute_doc_freq() | |
Cider_scorer.cider_scorer.ref_len = np.log(float(len(Cider_scorer.cider_scorer.crefs))) | |
# Prepare captions | |
capsById = {} | |
for d in preds_n: | |
capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] | |
capsById = tokenizer.tokenize(capsById) | |
imgIds = list(capsById.keys()) | |
scores = Cider_scorer.my_self_cider([capsById[_] for _ in imgIds]) | |
def get_div(eigvals): | |
eigvals = np.clip(eigvals, 0, None) | |
return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals)) | |
sc_scores = [get_div(np.linalg.eigvalsh(_/10)) for _ in scores] | |
score = np.mean(np.array(sc_scores)) | |
imgToEval = {} | |
for i, image_id in enumerate(imgIds): | |
imgToEval[image_id] = {'self_cider': sc_scores[i], 'self_cider_mat': scores[i].tolist()} | |
return {'overall': {'self_cider': score}, 'imgToEval': imgToEval} | |
return score | |