Spaces:
Sleeping
Sleeping
# This file contains Transformer network | |
# Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html | |
# The cfg name correspondance: | |
# N=num_layers | |
# d_model=input_encoding_size | |
# d_ff=rnn_size | |
# h is always 8 | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from . import utils | |
import copy | |
import math | |
import numpy as np | |
from .CaptionModel import CaptionModel | |
from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel | |
class EncoderDecoder(nn.Module): | |
""" | |
A standard Encoder-Decoder architecture. Base for this and many | |
other models. | |
""" | |
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): | |
super(EncoderDecoder, self).__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
self.src_embed = src_embed | |
self.tgt_embed = tgt_embed | |
self.generator = generator | |
def forward(self, src, tgt, src_mask, tgt_mask): | |
"Take in and process masked src and target sequences." | |
return self.decode(self.encode(src, src_mask), src_mask, | |
tgt, tgt_mask) | |
def encode(self, src, src_mask): | |
return self.encoder(self.src_embed(src), src_mask) | |
def decode(self, memory, src_mask, tgt, tgt_mask, past=None): | |
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask, past=past) | |
class Generator(nn.Module): | |
"Define standard linear + softmax generation step." | |
def __init__(self, d_model, vocab): | |
super(Generator, self).__init__() | |
self.proj = nn.Linear(d_model, vocab) | |
def forward(self, x): | |
return F.log_softmax(self.proj(x), dim=-1) | |
def clones(module, N): | |
"Produce N identical layers." | |
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) | |
class Encoder(nn.Module): | |
"Core encoder is a stack of N layers" | |
def __init__(self, layer, N): | |
super(Encoder, self).__init__() | |
self.layers = clones(layer, N) | |
self.norm = LayerNorm(layer.size) | |
def forward(self, x, mask): | |
"Pass the input (and mask) through each layer in turn." | |
for layer in self.layers: | |
x = layer(x, mask) | |
return self.norm(x) | |
class LayerNorm(nn.Module): | |
"Construct a layernorm module (See citation for details)." | |
def __init__(self, features, eps=1e-6): | |
super(LayerNorm, self).__init__() | |
self.a_2 = nn.Parameter(torch.ones(features)) | |
self.b_2 = nn.Parameter(torch.zeros(features)) | |
self.eps = eps | |
def forward(self, x): | |
mean = x.mean(-1, keepdim=True) | |
std = x.std(-1, keepdim=True) | |
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 | |
class SublayerConnection(nn.Module): | |
""" | |
A residual connection followed by a layer norm. | |
Note for code simplicity the norm is first as opposed to last. | |
""" | |
def __init__(self, size, dropout): | |
super(SublayerConnection, self).__init__() | |
self.norm = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, sublayer): | |
"Apply residual connection to any sublayer with the same size." | |
_x = sublayer(self.norm(x)) | |
if type(_x) is tuple: # for multi-head attention that returns past | |
return x + self.dropout(_x[0]), _x[1] | |
return x + self.dropout(_x) | |
class EncoderLayer(nn.Module): | |
"Encoder is made up of self-attn and feed forward (defined below)" | |
def __init__(self, size, self_attn, feed_forward, dropout): | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.sublayer = clones(SublayerConnection(size, dropout), 2) | |
self.size = size | |
def forward(self, x, mask): | |
"Follow Figure 1 (left) for connections." | |
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) | |
return self.sublayer[1](x, self.feed_forward) | |
class Decoder(nn.Module): | |
"Generic N layer decoder with masking." | |
def __init__(self, layer, N): | |
super(Decoder, self).__init__() | |
self.layers = clones(layer, N) | |
self.norm = LayerNorm(layer.size) | |
def forward(self, x, memory, src_mask, tgt_mask, past=None): | |
if past is not None: | |
present = [[], []] | |
x = x[:, -1:] | |
tgt_mask = tgt_mask[:, -1:] if tgt_mask is not None else None | |
past = list(zip(past[0].split(2, dim=0), past[1].split(2, dim=0))) | |
else: | |
past = [None] * len(self.layers) | |
for i, (layer, layer_past) in enumerate(zip(self.layers, past)): | |
x = layer(x, memory, src_mask, tgt_mask, | |
layer_past) | |
if layer_past is not None: | |
present[0].append(x[1][0]) | |
present[1].append(x[1][1]) | |
x = x[0] | |
if past[0] is None: | |
return self.norm(x) | |
else: | |
return self.norm(x), [torch.cat(present[0], 0), torch.cat(present[1], 0)] | |
class DecoderLayer(nn.Module): | |
"Decoder is made of self-attn, src-attn, and feed forward (defined below)" | |
def __init__(self, size, self_attn, src_attn, feed_forward, dropout): | |
super(DecoderLayer, self).__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.src_attn = src_attn | |
self.feed_forward = feed_forward | |
self.sublayer = clones(SublayerConnection(size, dropout), 3) | |
def forward(self, x, memory, src_mask, tgt_mask, layer_past=None): | |
"Follow Figure 1 (right) for connections." | |
m = memory | |
if layer_past is None: | |
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) | |
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) | |
return self.sublayer[2](x, self.feed_forward) | |
else: | |
present = [None, None] | |
x, present[0] = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask, layer_past[0])) | |
x, present[1] = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask, layer_past[1])) | |
return self.sublayer[2](x, self.feed_forward), present | |
def subsequent_mask(size): | |
"Mask out subsequent positions." | |
attn_shape = (1, size, size) | |
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') | |
return torch.from_numpy(subsequent_mask) == 0 | |
def attention(query, key, value, mask=None, dropout=None): | |
"Compute 'Scaled Dot Product Attention'" | |
d_k = query.size(-1) | |
scores = torch.matmul(query, key.transpose(-2, -1)) \ | |
/ math.sqrt(d_k) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, float('-inf')) | |
p_attn = F.softmax(scores, dim = -1) | |
if dropout is not None: | |
p_attn = dropout(p_attn) | |
return torch.matmul(p_attn, value), p_attn | |
class MultiHeadedAttention(nn.Module): | |
def __init__(self, h, d_model, dropout=0.1): | |
"Take in model size and number of heads." | |
super(MultiHeadedAttention, self).__init__() | |
assert d_model % h == 0 | |
# We assume d_v always equals d_k | |
self.d_k = d_model // h | |
self.h = h | |
self.linears = clones(nn.Linear(d_model, d_model), 4) | |
self.attn = None | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, query, key, value, mask=None, layer_past=None): | |
"Implements Figure 2" | |
if mask is not None: | |
# Same mask applied to all h heads. | |
mask = mask.unsqueeze(1) | |
nbatches = query.size(0) | |
# The past works differently here. For self attn, the query and key be updated incrementailly | |
# For src_attn the past is fixed. | |
# For src_attn, when the layer past is ready | |
if layer_past is not None and layer_past.shape[2] == key.shape[1] > 1: # suppose memory size always greater than 1 | |
query = self.linears[0](query) | |
key, value = layer_past[0], layer_past[1] | |
present = torch.stack([key, value]) | |
else: | |
# 1) Do all the linear projections in batch from d_model => h x d_k | |
query, key, value = \ | |
[l(x) for l, x in zip(self.linears, (query, key, value))] | |
# self attn + past OR the first time step of src attn | |
if layer_past is not None and not (layer_past.shape[2] == key.shape[1] > 1): | |
past_key, past_value = layer_past[0], layer_past[1] | |
key = torch.cat((past_key, key), dim=1) | |
value = torch.cat((past_value, value), dim=1) | |
present = torch.stack([key, value]) | |
query, key, value = \ | |
[x.view(nbatches, -1, self.h, self.d_k).transpose(1, 2) | |
for x in [query, key, value]] | |
# 2) Apply attention on all the projected vectors in batch. | |
x, self.attn = attention(query, key, value, mask=mask, | |
dropout=self.dropout) | |
# 3) "Concat" using a view and apply a final linear. | |
x = x.transpose(1, 2).contiguous() \ | |
.view(nbatches, -1, self.h * self.d_k) | |
if layer_past is not None: | |
return self.linears[-1](x), present | |
else: | |
return self.linears[-1](x) | |
class PositionwiseFeedForward(nn.Module): | |
"Implements FFN equation." | |
def __init__(self, d_model, d_ff, dropout=0.1): | |
super(PositionwiseFeedForward, self).__init__() | |
self.w_1 = nn.Linear(d_model, d_ff) | |
self.w_2 = nn.Linear(d_ff, d_model) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
return self.w_2(self.dropout(F.relu(self.w_1(x)))) | |
class Embeddings(nn.Module): | |
def __init__(self, d_model, vocab): | |
super(Embeddings, self).__init__() | |
self.lut = nn.Embedding(vocab, d_model) | |
self.d_model = d_model | |
def forward(self, x): | |
return self.lut(x) * math.sqrt(self.d_model) | |
class PositionalEncoding(nn.Module): | |
"Implement the PE function." | |
def __init__(self, d_model, dropout, max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
# Compute the positional encodings once in log space. | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len).unsqueeze(1).float() | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * | |
-(math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + self.pe[:, :x.size(1)] | |
return self.dropout(x) | |
class TransformerModel(AttModel): | |
def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, | |
d_model=512, d_ff=2048, h=8, dropout=0.1): | |
"Helper: Construct a model from hyperparameters." | |
c = copy.deepcopy | |
attn = MultiHeadedAttention(h, d_model, dropout) | |
ff = PositionwiseFeedForward(d_model, d_ff, dropout) | |
position = PositionalEncoding(d_model, dropout) | |
model = EncoderDecoder( | |
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc), | |
Decoder(DecoderLayer(d_model, c(attn), c(attn), | |
c(ff), dropout), N_dec), | |
lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), | |
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), | |
Generator(d_model, tgt_vocab)) | |
# This was important from their code. | |
# Initialize parameters with Glorot / fan_avg. | |
for p in model.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
return model | |
def __init__(self, opt): | |
super(TransformerModel, self).__init__(opt) | |
self.opt = opt | |
# self.config = yaml.load(open(opt.config_file)) | |
self.N_enc = getattr(opt, 'N_enc', opt.num_layers) | |
self.N_dec = getattr(opt, 'N_dec', opt.num_layers) | |
self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) | |
self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) | |
self.h = getattr(opt, 'num_att_heads', 8) | |
self.dropout = getattr(opt, 'dropout', 0.1) | |
delattr(self, 'att_embed') | |
self.att_embed = nn.Sequential(*( | |
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ | |
(nn.Linear(self.att_feat_size, self.d_model), | |
nn.ReLU(), | |
nn.Dropout(self.drop_prob_lm))+ | |
((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) | |
delattr(self, 'embed') | |
self.embed = lambda x : x | |
delattr(self, 'fc_embed') | |
self.fc_embed = lambda x : x | |
delattr(self, 'logit') | |
del self.ctx2att | |
tgt_vocab = self.vocab_size + 1 | |
self.model = self.make_model(0, tgt_vocab, | |
N_enc=self.N_enc, | |
N_dec=self.N_dec, | |
d_model=self.d_model, | |
d_ff=self.d_ff, | |
h=self.h, | |
dropout=self.dropout) | |
def logit(self, x): # unsafe way | |
return self.model.generator.proj(x) | |
def init_hidden(self, bsz): | |
return [] | |
def _prepare_feature(self, fc_feats, att_feats, att_masks): | |
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks) | |
memory = self.model.encode(att_feats, att_masks) | |
return fc_feats[...,:0], att_feats[...,:0], memory, att_masks | |
def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None): | |
att_feats, att_masks = self.clip_att(att_feats, att_masks) | |
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) | |
if att_masks is None: | |
att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) | |
att_masks = att_masks.unsqueeze(-2) | |
if seq is not None: | |
# crop the last one | |
# seq = seq[:,:-1] | |
seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) | |
seq_mask[:,0] = 1 # bos | |
seq_mask = seq_mask.unsqueeze(-2) | |
seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) | |
seq_per_img = seq.shape[0] // att_feats.shape[0] | |
if seq_per_img > 1: | |
att_feats, att_masks = utils.repeat_tensors(seq_per_img, | |
[att_feats, att_masks] | |
) | |
else: | |
seq_mask = None | |
return att_feats, seq, att_masks, seq_mask | |
def _forward(self, fc_feats, att_feats, seq, att_masks=None): | |
if seq.ndim == 3: # B * seq_per_img * seq_len | |
seq = seq.reshape(-1, seq.shape[2]) | |
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq) | |
out = self.model(att_feats, seq, att_masks, seq_mask) | |
outputs = self.model.generator(out) | |
return outputs | |
# return torch.cat([_.unsqueeze(1) for _ in outputs], 1) | |
def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): | |
""" | |
state is the precomputed key/value. N_dec x seq_len x d_model | |
Note: due to the layer norm, it's not equivalant to stateless, | |
but it seems behaving similar | |
""" | |
# state is tokens + past | |
if len(state) == 0: | |
ys = it.unsqueeze(1) | |
# basically empty state, just to let it know to return past | |
# The second dim has to be batch_size, for beam search purpose | |
past = [fc_feats_ph.new_zeros(self.N_dec * 2, fc_feats_ph.shape[0], 0, self.d_model), # self | |
fc_feats_ph.new_zeros(self.N_dec * 2, fc_feats_ph.shape[0], 0, self.d_model)] # src | |
# 2 for self attn, 2 for src attn | |
else: | |
ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) | |
past = state[1:] | |
out, past = self.model.decode(memory, mask, | |
ys, # We still feed the full past words, because we need it for position embedding to know the position id | |
subsequent_mask(ys.size(1)) | |
.to(memory.device), | |
past=past) | |
return out[:, -1], [ys.unsqueeze(0)] + past | |