File size: 2,881 Bytes
4de9c2d a7de3a4 4de9c2d a7de3a4 999a71a a7de3a4 999a71a 4de9c2d 999a71a 4de9c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import streamlit as st
import pickle
from Prediction import Prediction
from huggingface_hub import hf_hub_download
# resnet_model = pickle.load(open('models/ResNet01.pkl','rb'))
# cnn_model = pickle.load(open('models/CNNModel2.pkl','rb'))
# inc_model = pickle.load(open('models/Inception01.pkl','rb'))
# resnet_model = TFAutoModel.from_pretrained("yashpat85/ResNet01")
REPO_ID1 = "yashpat85/ResNet01"
MODEL_DIR1 = hf_hub_download(repo_id=REPO_ID1, filename="ResNet01.pkl", repo_type="model")
REPO_ID2= "yashpat85/Inception01"
MODEL_DIR2 = hf_hub_download(repo_id=REPO_ID2, filename="Inception01.pkl", repo_type="model")
REPO_ID3 = "yashpat85/CNNModel2"
MODEL_DIR3 = hf_hub_download(repo_id=REPO_ID3, filename="CNNModel2.pkl", repo_type="model")
resnet_model = pickle.load(open(MODEL_DIR1,'rb'))
cnn_model = pickle.load(open(MODEL_DIR3,'rb'))
inc_model = pickle.load(open(MODEL_DIR2,'rb'))
def show_error_popup(message):
st.error(message, icon="🚨")
st.set_page_config(layout="wide")
st.title('Kidney Disease Classification using CNN')
st.markdown('By 22DCS079 & 22DCS085')
st.header('Add Ct Scan Image')
uploaded_file = st.file_uploader("Choose a ct scan image", type=["jpg", "png", "jpeg"])
st.header("Available Models")
option = st.selectbox(
"Available Models",
("ResNet", "CNN","InceptionNet"),
)
pm = Prediction()
col1, col2= st.columns(2)
if uploaded_file is not None:
with col1:
image_data = uploaded_file.read()
st.image(image_data, caption="Uploaded Image")
with col2:
if option=="CNN":
p = pm.predict_image(cnn_model, image_data)
elif option=="ResNet":
p = pm.predict_image(resnet_model, image_data)
elif option=="InceptionNet":
p = pm.predict_image(inc_model, image_data)
else:
p = "Other Models are still under training due to overfitting"
print(p)
if p=='Normal':
st.markdown("""
<style>
.big-font {
display: flex;
align-items:center;
justify-content: center;
font-size:50px !important;
color:green;
height: 50vh;
}
</style>
""", unsafe_allow_html=True)
st.markdown(f'<div class="big-font">{p}</div>', unsafe_allow_html=True)
else:
st.markdown("""
<style>
.big-font {
display: flex;
align-items:center;
justify-content: center;
font-size:50px !important;
color:red;
height: 50vh;
}
</style>
""", unsafe_allow_html=True)
st.markdown(f'<div class="big-font">{p}</div>', unsafe_allow_html=True)
else:
show_error_popup("Please Upload Image...")
|