Spaces:
Sleeping
Sleeping
YanBoChen
commited on
Commit
·
7282410
1
Parent(s):
c414f60
WIP(llm_clients): add MeditronClient for medical query processing with Hugging Face integration
Browse files- .env.example +2 -0
- requirements.txt +1 -0
- src/llm_clients.py +165 -0
.env.example
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# .env.example document
|
2 |
+
HF_TOKEN=your_huggingface_token_here
|
requirements.txt
CHANGED
@@ -56,6 +56,7 @@ pydub==0.25.1
|
|
56 |
Pygments==2.19.2
|
57 |
pyparsing==3.2.3
|
58 |
python-dateutil==2.9.0.post0
|
|
|
59 |
python-multipart==0.0.20
|
60 |
pytz==2025.2
|
61 |
PyYAML==6.0.2
|
|
|
56 |
Pygments==2.19.2
|
57 |
pyparsing==3.2.3
|
58 |
python-dateutil==2.9.0.post0
|
59 |
+
python-dotenv==1.1.1
|
60 |
python-multipart==0.0.20
|
61 |
pytz==2025.2
|
62 |
PyYAML==6.0.2
|
src/llm_clients.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OnCall.ai LLM Clients Module
|
3 |
+
|
4 |
+
Provides specialized LLM clients for medical query processing.
|
5 |
+
|
6 |
+
Author: OnCall.ai Team
|
7 |
+
Date: 2025-07-29
|
8 |
+
"""
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
from typing import Dict, Optional
|
13 |
+
from huggingface_hub import InferenceClient
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
# Load environment variables from .env file
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
class MeditronClient:
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
model: str = "TheBloke/meditron-7B-GPTQ",
|
23 |
+
timeout: float = 30.0
|
24 |
+
):
|
25 |
+
"""
|
26 |
+
Initialize Meditron API client for medical query processing.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
model: Hugging Face model name
|
30 |
+
timeout: API call timeout duration (not used in InferenceClient)
|
31 |
+
|
32 |
+
Warning: This model should not be used for professional medical advice.
|
33 |
+
"""
|
34 |
+
# Get HF token from environment variable
|
35 |
+
hf_token = os.getenv('HF_TOKEN')
|
36 |
+
if not hf_token:
|
37 |
+
raise ValueError(
|
38 |
+
"HF_TOKEN not found in environment variables. "
|
39 |
+
"Please set HF_TOKEN in your .env file or environment."
|
40 |
+
)
|
41 |
+
|
42 |
+
self.client = InferenceClient(model=model, token=hf_token)
|
43 |
+
self.logger = logging.getLogger(__name__)
|
44 |
+
self.timeout = timeout
|
45 |
+
self.logger.warning(
|
46 |
+
"Meditron Model: Research tool only. "
|
47 |
+
"Not for professional medical diagnosis."
|
48 |
+
)
|
49 |
+
self.logger.info("Meditron client initialized with HF token")
|
50 |
+
|
51 |
+
def analyze_medical_query(
|
52 |
+
self,
|
53 |
+
query: str,
|
54 |
+
max_tokens: int = 100,
|
55 |
+
timeout: Optional[float] = None
|
56 |
+
) -> Dict[str, str]:
|
57 |
+
"""
|
58 |
+
Analyze medical query and extract condition.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
query: Medical query text
|
62 |
+
max_tokens: Maximum tokens to generate
|
63 |
+
timeout: Specific API call timeout (not used in InferenceClient)
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
Extracted medical condition information
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
# ChatML style prompt for Meditron
|
70 |
+
prompt = f"""<|im_start|>system
|
71 |
+
You are a professional medical assistant trained to extract medical conditions.
|
72 |
+
Provide only the most representative condition name.
|
73 |
+
DO NOT provide medical advice.
|
74 |
+
<|im_end|>
|
75 |
+
<|im_start|>user
|
76 |
+
{query}
|
77 |
+
<|im_end|>
|
78 |
+
<|im_start|>assistant
|
79 |
+
"""
|
80 |
+
|
81 |
+
self.logger.info(f"Calling Meditron API with query: {query}")
|
82 |
+
|
83 |
+
# Remove timeout parameter as InferenceClient doesn't support it
|
84 |
+
response = self.client.text_generation(
|
85 |
+
prompt,
|
86 |
+
max_new_tokens=max_tokens,
|
87 |
+
temperature=0.7,
|
88 |
+
top_k=50
|
89 |
+
)
|
90 |
+
|
91 |
+
self.logger.info(f"Received response: {response}")
|
92 |
+
|
93 |
+
# Extract condition from response
|
94 |
+
extracted_condition = self._extract_condition(response)
|
95 |
+
|
96 |
+
return {
|
97 |
+
'extracted_condition': extracted_condition,
|
98 |
+
'confidence': 0.8,
|
99 |
+
'raw_response': response
|
100 |
+
}
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
self.logger.error(f"Meditron API query error: {str(e)}")
|
104 |
+
self.logger.error(f"Error type: {type(e).__name__}")
|
105 |
+
return {
|
106 |
+
'extracted_condition': '',
|
107 |
+
'confidence': 0,
|
108 |
+
'error': str(e)
|
109 |
+
}
|
110 |
+
|
111 |
+
def _extract_condition(self, response: str) -> str:
|
112 |
+
"""
|
113 |
+
Extract medical condition from model response.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
response: Full model-generated text
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
Extracted medical condition
|
120 |
+
"""
|
121 |
+
from medical_conditions import CONDITION_KEYWORD_MAPPING
|
122 |
+
|
123 |
+
# Remove prompt parts, keep only generated content
|
124 |
+
generated_text = response.split('<|im_start|>assistant\n')[-1].strip()
|
125 |
+
|
126 |
+
# Search in known medical conditions
|
127 |
+
for condition in CONDITION_KEYWORD_MAPPING.keys():
|
128 |
+
if condition.lower() in generated_text.lower():
|
129 |
+
return condition
|
130 |
+
|
131 |
+
return generated_text.split('\n')[0].strip()
|
132 |
+
|
133 |
+
def main():
|
134 |
+
"""
|
135 |
+
Test Meditron client functionality
|
136 |
+
"""
|
137 |
+
try:
|
138 |
+
client = MeditronClient()
|
139 |
+
test_queries = [
|
140 |
+
"patient experiencing chest pain",
|
141 |
+
"sudden weakness on one side",
|
142 |
+
"severe headache with neurological symptoms"
|
143 |
+
]
|
144 |
+
|
145 |
+
for query in test_queries:
|
146 |
+
print(f"\nTesting query: {query}")
|
147 |
+
result = client.analyze_medical_query(query)
|
148 |
+
print("Extracted Condition:", result['extracted_condition'])
|
149 |
+
print("Confidence:", result['confidence'])
|
150 |
+
if 'error' in result:
|
151 |
+
print("Error:", result['error'])
|
152 |
+
print("---")
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
print(f"Client initialization error: {str(e)}")
|
156 |
+
print("This might be due to:")
|
157 |
+
print("1. Missing Hugging Face API token")
|
158 |
+
print("2. Network connectivity issues")
|
159 |
+
print("3. Model access permissions")
|
160 |
+
print("\nTo fix:")
|
161 |
+
print("1. Set HF_TOKEN environment variable")
|
162 |
+
print("2. Or login with: huggingface-cli login")
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
main()
|