Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,115 Bytes
c9cc441 721391f bd4674a c9cc441 721391f c9cc441 c8099eb c9cc441 dd5dfc8 c9cc441 d7a562e c9cc441 dd5dfc8 9a157ab c9cc441 bd4674a dd5dfc8 2a43cdb dd5dfc8 ce12cd7 bd4674a c9cc441 d81c6ca c9cc441 bd4674a c9cc441 c8099eb c9cc441 c8099eb c9cc441 c8099eb c9cc441 509663d c9cc441 509663d c9cc441 c8099eb c9cc441 a742794 c9cc441 b40896d c9cc441 c8099eb c9cc441 c8099eb c9cc441 c8099eb c9cc441 c8099eb c9cc441 c8099eb c9cc441 dd5dfc8 c9cc441 87c0a2f c9cc441 dd5dfc8 c9cc441 b40896d 098cbc8 c9cc441 87c0a2f c9cc441 dd5dfc8 c9cc441 17e3bae c9cc441 17e3bae c9cc441 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import io
import os
import base64
from PIL import Image
import cv2
import numpy as np
from scripts.generate_prompt import load_wd14_tagger_model, generate_tags, preprocess_image as wd14_preprocess_image
from scripts.lineart_util import scribble_xdog, get_sketch, canny
from scripts.anime import init_model
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, AutoencoderKL
import gc
from peft import PeftModel
from dotenv import load_dotenv
from scripts.hf_utils import download_file
import spaces
# グローバル変数
use_local = False
model = None
device = None
torch_dtype = None # torch.float16 if device == "cuda" else torch.float32
sotai_gen_pipe = None
refine_gen_pipe = None
def get_file_path(filename, subfolder):
if use_local:
return subfolder + "/" + filename
else:
return download_file(filename, subfolder)
def ensure_rgb(image):
if image.mode != 'RGB':
return image.convert('RGB')
return image
def initialize(_use_local=False, use_gpu=False, use_dotenv=False):
if use_dotenv:
load_dotenv()
global model, sotai_gen_pipe, refine_gen_pipe, use_local, device, torch_dtype
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device == "cuda" else torch.float32
use_local = _use_local
print(f"\nDevice: {device}, Local model: {_use_local}\n")
init_model(use_local)
model = load_wd14_tagger_model()
sotai_gen_pipe = initialize_sotai_model()
refine_gen_pipe = initialize_refine_model()
def load_lora(pipeline, lora_path, adapter_name, alpha=0.75):
pipeline.load_lora_weights(lora_path, adapter_name)
pipeline.fuse_lora(lora_scale=alpha, adapter_names=[adapter_name])
pipeline.set_lora_device(adapter_names=[adapter_name], device=device)
def initialize_sotai_model():
global device, torch_dtype
sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"])
controlnet_path1 = get_file_path(os.environ["controlnet_name1"], subfolder=os.environ["controlnet_dir2"])
# controlnet_path1 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
controlnet_path2 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
# Load the Stable Diffusion model
sd_pipe = StableDiffusionPipeline.from_single_file(
sotai_sd_model_path,
torch_dtype=torch_dtype,
use_safetensors=True
).to(device)
# Load the ControlNet model
controlnet1 = ControlNetModel.from_single_file(
controlnet_path1,
torch_dtype=torch_dtype
).to(device)
# Load the ControlNet model
controlnet2 = ControlNetModel.from_single_file(
controlnet_path2,
torch_dtype=torch_dtype
).to(device)
# Create the ControlNet pipeline
sotai_gen_pipe = StableDiffusionControlNetPipeline(
vae=sd_pipe.vae,
text_encoder=sd_pipe.text_encoder,
tokenizer=sd_pipe.tokenizer,
unet=sd_pipe.unet,
scheduler=sd_pipe.scheduler,
safety_checker=sd_pipe.safety_checker,
feature_extractor=sd_pipe.feature_extractor,
controlnet=[controlnet1, controlnet2]
).to(device)
# LoRAの適用
lora_names = [
(os.environ["lora_name1"], 1.0),
# (os.environ["lora_name2"], 0.3),
]
# for lora_name, alpha in lora_names:
# lora_path = get_file_path(lora_name, subfolder=os.environ["lora_dir"])
# load_lora(sotai_gen_pipe, lora_path, adapter_name=lora_name.split(".")[0], alpha=alpha)
# スケジューラーの設定
sotai_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(sotai_gen_pipe.scheduler.config)
return sotai_gen_pipe
def initialize_refine_model():
global device, torch_dtype
refine_sd_model_path = get_file_path(os.environ["refine_sd_model_name"], subfolder=os.environ["sd_models_dir"])
controlnet_path3 = get_file_path(os.environ["controlnet_name3"], subfolder=os.environ["controlnet_dir1"])
controlnet_path4 = get_file_path(os.environ["controlnet_name4"], subfolder=os.environ["controlnet_dir1"])
vae_path = get_file_path(os.environ["vae_name"], subfolder=os.environ["vae_dir"])
# Load the Stable Diffusion model
sd_pipe = StableDiffusionPipeline.from_single_file(
refine_sd_model_path,
torch_dtype=torch_dtype,
variant="fp16",
use_safetensors=True
).to(device)
# controlnet_path = "models/cn/control_v11p_sd15_canny.pth"
controlnet1 = ControlNetModel.from_single_file(
controlnet_path3,
torch_dtype=torch_dtype
).to(device)
# Load the ControlNet model
controlnet2 = ControlNetModel.from_single_file(
controlnet_path4,
torch_dtype=torch_dtype
).to(device)
# Create the ControlNet pipeline
refine_gen_pipe = StableDiffusionControlNetPipeline(
vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype).to(device),
text_encoder=sd_pipe.text_encoder,
tokenizer=sd_pipe.tokenizer,
unet=sd_pipe.unet,
scheduler=sd_pipe.scheduler,
safety_checker=sd_pipe.safety_checker,
feature_extractor=sd_pipe.feature_extractor,
controlnet=[controlnet1, controlnet2], # 複数のControlNetを指定
).to(device)
# スケジューラーの設定
refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config)
return refine_gen_pipe
def get_wd_tags(images: list) -> list:
global model
if model is None:
raise ValueError("Model is not initialized")
# initialize()
preprocessed_images = [wd14_preprocess_image(img) for img in images]
preprocessed_images = np.array(preprocessed_images)
return generate_tags(preprocessed_images, os.environ["wd_model_name"], model)
def preprocess_image_for_generation(image):
if isinstance(image, str): # base64文字列の場合
image = Image.open(io.BytesIO(base64.b64decode(image)))
elif isinstance(image, np.ndarray): # numpy配列の場合
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
raise ValueError("Unsupported image type")
# 画像サイズの計算
input_width, input_height = image.size
max_size = 736
output_width = max_size if input_height < input_width else int(input_width / input_height * max_size)
output_height = max_size if input_height > input_width else int(input_height / input_width * max_size)
image = image.resize((output_width, output_height))
return image, output_width, output_height
def binarize_image(image: Image.Image) -> np.ndarray:
image = np.array(image.convert('L'))
# 色反転
image = 255 - image
# ヒストグラム平坦化
clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8, 8))
image = clahe.apply(image)
# ガウシアンブラー適用
image = cv2.GaussianBlur(image, (5, 5), 0)
# 適応的二値化
binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 9, -8)
return binary_image
def create_rgba_image(binary_image: np.ndarray, color: list) -> Image.Image:
rgba_image = np.zeros((binary_image.shape[0], binary_image.shape[1], 4), dtype=np.uint8)
rgba_image[:, :, 0] = color[0]
rgba_image[:, :, 1] = color[1]
rgba_image[:, :, 2] = color[2]
rgba_image[:, :, 3] = binary_image
return Image.fromarray(rgba_image, 'RGBA')
# @spaces.GPU
def generate_sotai_image(input_image: Image.Image, output_width: int, output_height: int) -> Image.Image:
input_image = ensure_rgb(input_image)
global sotai_gen_pipe
if sotai_gen_pipe is None:
raise ValueError("Model is not initialized")
# initialize()
prompt = "anime pose, girl, (white background:1.5), (monochrome:1.5), full body, sketch, eyes, breasts, (slim legs, skinny legs:1.2)"
try:
# 入力画像のリサイズ
if input_image.size[0] > input_image.size[1]:
input_image = input_image.resize((512, int(512 * input_image.size[1] / input_image.size[0])))
else:
input_image = input_image.resize((int(512 * input_image.size[0] / input_image.size[1]), 512))
# EasyNegativeV2の内容
easy_negative_v2 = "(worst quality, low quality, normal quality:1.4), lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, artist name, (bad_prompt_version2:0.8)"
output = sotai_gen_pipe(
prompt,
image=[input_image, input_image],
negative_prompt=f"(wings:1.6), (clothes, garment, lighting, gray, missing limb, extra line, extra limb, extra arm, extra legs, hair, bangs, fringe, forelock, front hair, fill:1.4), (ink pool:1.6)",
# negative_prompt=f"{easy_negative_v2}, (wings:1.6), (clothes, garment, lighting, gray, missing limb, extra line, extra limb, extra arm, extra legs, hair, bangs, fringe, forelock, front hair, fill:1.4), (ink pool:1.6)",
num_inference_steps=20,
guidance_scale=8,
width=output_width,
height=output_height,
denoising_strength=0.13,
num_images_per_prompt=1, # Equivalent to batch_size
guess_mode=[True, True], # Equivalent to pixel_perfect
controlnet_conditioning_scale=[1.4, 1.3], # 各ControlNetの重み
guidance_start=[0.0, 0.0],
guidance_end=[1.0, 1.0],
)
generated_image = output.images[0]
return generated_image
finally:
# メモリ解放
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
# @spaces.GPU
def generate_refined_image(prompt: str, original_image: Image.Image, output_width: int, output_height: int, weight1: float, weight2: float) -> Image.Image:
original_image = ensure_rgb(original_image)
global refine_gen_pipe
if refine_gen_pipe is None:
raise ValueError("Model is not initialized")
# initialize()
try:
original_image_np = np.array(original_image)
# scribble_xdog
scribble_image, _ = scribble_xdog(original_image_np, 2048, 20)
original_image = original_image.resize((output_width, output_height))
output = refine_gen_pipe(
prompt,
image=[scribble_image, original_image], # 2つのControlNetに対応する入力画像
negative_prompt="extra limb, monochrome, black and white",
num_inference_steps=20,
width=output_width,
height=output_height,
controlnet_conditioning_scale=[weight1, weight2], # 各ControlNetの重み
control_guidance_start=[0.0, 0.0],
control_guidance_end=[1.0, 1.0],
guess_mode=[False, False], # pixel_perfect
)
generated_image = output.images[0]
return generated_image
finally:
# メモリ解放
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
def process_image(input_image, mode: str, weight1: float = 0.4, weight2: float = 0.3):
input_image = ensure_rgb(input_image)
# サイズを取得
input_width, input_height = input_image.size
max_size = 736
output_width = max_size if input_height < input_width else int(input_width / input_height * max_size)
output_height = max_size if input_height > input_width else int(input_height / input_width * max_size)
if mode == "refine":
# WD-14 taggerを使用してプロンプトを生成
image_np = np.array(ensure_rgb(input_image))
prompt = get_wd_tags([image_np])[0]
prompt = f"{prompt}"
refined_image = generate_refined_image(prompt, input_image, output_width, output_height, weight1, weight2)
refined_image = refined_image.convert('RGB')
# スケッチ画像を生成
refined_image_np = np.array(refined_image)
sketch_image = get_sketch(refined_image_np, "both", 2048, 10)
sketch_image = sketch_image.resize((output_width, output_height)) # 画像サイズを合わせる
# スケッチ画像の二値化
sketch_binary = binarize_image(sketch_image)
# RGBAに変換(透明なベース画像を作成)して、青い線を設定
sketch_image = create_rgba_image(sketch_binary, [0, 0, 255])
# 素体画像の生成
sotai_image = generate_sotai_image(refined_image, output_width, output_height)
elif mode == "original":
sotai_image = generate_sotai_image(input_image, output_width, output_height)
# スケッチ画像の生成
input_image_np = np.array(input_image)
sketch_image = get_sketch(input_image_np, "both", 2048, 16)
elif mode == "sketch":
# スケッチ画像の生成
input_image_np = np.array(input_image)
sketch_image = get_sketch(input_image_np, "both", 2048, 16)
# 素体画像の生成
sotai_image = generate_sotai_image(sketch_image, output_width, output_height)
else:
raise ValueError("Invalid mode")
# 素体画像の二値化
sotai_binary = binarize_image(sotai_image)
# RGBAに変換(透明なベース画像を作成)して、赤い線を設定
sotai_image = create_rgba_image(sotai_binary, [255, 0, 0])
return sotai_image, sketch_image
def image_to_base64(img_array):
buffered = io.BytesIO()
img_array.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def process_image_as_base64(input_image, mode: str, weight1: float = 0.4, weight2: float = 0.3):
sotai_image, sketch_image = process_image(input_image, mode, weight1, weight2)
return image_to_base64(sotai_image), image_to_base64(sketch_image)
|