File size: 13,918 Bytes
c9cc441
 
 
 
 
 
721391f
 
bd4674a
c9cc441
 
 
 
721391f
c9cc441
 
dd5dfc8
c9cc441
d7a562e
5498083
c9cc441
 
 
dd5dfc8
 
9a157ab
c9cc441
 
 
 
 
 
 
 
bd4674a
 
 
dd5dfc8
2a43cdb
 
dd5dfc8
ce12cd7
 
 
d322b7c
6990c61
668a8c2
c9cc441
d81c6ca
 
 
 
c9cc441
 
 
 
 
bd4674a
 
c9cc441
 
 
 
 
 
 
c8099eb
c9cc441
 
 
 
 
c8099eb
c9cc441
 
 
 
 
c8099eb
c9cc441
 
 
509663d
c9cc441
 
509663d
c9cc441
 
 
 
c8099eb
c9cc441
 
 
 
 
 
 
a742794
 
 
c9cc441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b40896d
c9cc441
c8099eb
c9cc441
 
 
 
 
c8099eb
c9cc441
 
 
 
 
c8099eb
c9cc441
 
 
c8099eb
c9cc441
 
 
 
 
 
 
c8099eb
c9cc441
 
 
 
 
 
 
 
 
eb467c4
c9cc441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5dfc8
 
c9cc441
 
 
 
 
 
 
 
 
 
 
b40896d
098cbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9cc441
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5dfc8
 
c9cc441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e3bae
c9cc441
 
17e3bae
c9cc441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import io
import os
import base64
from PIL import Image
import cv2
import numpy as np
from scripts.generate_prompt import load_wd14_tagger_model, generate_tags, preprocess_image as wd14_preprocess_image
from scripts.lineart_util import scribble_xdog, get_sketch, canny
from scripts.anime import init_model
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, AutoencoderKL
import gc
from dotenv import load_dotenv
from scripts.hf_utils import download_file

# グローバル変数
use_local = False
model = None
device = None
torch_dtype = None
sotai_gen_pipe = None
refine_gen_pipe = None

def get_file_path(filename, subfolder):
    if use_local:
        return subfolder + "/" + filename
    else:
        return download_file(filename, subfolder)

def ensure_rgb(image):
    if image.mode != 'RGB':
        return image.convert('RGB')
    return image

def initialize(_use_local=False, use_gpu=False, use_dotenv=False):
    if use_dotenv:
        load_dotenv()
    global model, sotai_gen_pipe, refine_gen_pipe, use_local, device, torch_dtype
    device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if device == "cuda" else torch.float32
    use_local = _use_local

    print(f"\nDevice: {device}, Local model: {_use_local}\n")

    init_model(use_local)
    sotai_gen_pipe = initialize_sotai_model()
    refine_gen_pipe = initialize_refine_model()

def load_lora(pipeline, lora_path, adapter_name, alpha=0.75):
    pipeline.load_lora_weights(lora_path, adapter_name)
    pipeline.fuse_lora(lora_scale=alpha, adapter_names=[adapter_name])
    pipeline.set_lora_device(adapter_names=[adapter_name], device=device)   

def initialize_sotai_model():
    global device, torch_dtype

    sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"])
    controlnet_path1 =  get_file_path(os.environ["controlnet_name1"], subfolder=os.environ["controlnet_dir2"])
    # controlnet_path1 =  get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
    controlnet_path2 =  get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])

    # Load the Stable Diffusion model
    sd_pipe = StableDiffusionPipeline.from_single_file(
        sotai_sd_model_path,
        torch_dtype=torch_dtype,
        use_safetensors=True
    ).to(device)
    
    # Load the ControlNet model
    controlnet1 = ControlNetModel.from_single_file(
        controlnet_path1,
        torch_dtype=torch_dtype
    ).to(device)
    
    # Load the ControlNet model
    controlnet2 = ControlNetModel.from_single_file(
        controlnet_path2,
        torch_dtype=torch_dtype
    ).to(device)

    # Create the ControlNet pipeline
    sotai_gen_pipe = StableDiffusionControlNetPipeline(
        vae=sd_pipe.vae,
        text_encoder=sd_pipe.text_encoder,
        tokenizer=sd_pipe.tokenizer,
        unet=sd_pipe.unet,
        scheduler=sd_pipe.scheduler,
        safety_checker=sd_pipe.safety_checker,
        feature_extractor=sd_pipe.feature_extractor,
        controlnet=[controlnet1, controlnet2]
    ).to(device)

    # LoRAの適用
    lora_names = [
        (os.environ["lora_name1"], 1.0),
        # (os.environ["lora_name2"], 0.3),
    ]
    
    # for lora_name, alpha in lora_names:
    #     lora_path = get_file_path(lora_name, subfolder=os.environ["lora_dir"])
    #     load_lora(sotai_gen_pipe, lora_path, adapter_name=lora_name.split(".")[0], alpha=alpha)

    # スケジューラーの設定
    sotai_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(sotai_gen_pipe.scheduler.config)

    return sotai_gen_pipe

def initialize_refine_model():
    global device, torch_dtype

    refine_sd_model_path = get_file_path(os.environ["refine_sd_model_name"], subfolder=os.environ["sd_models_dir"])
    controlnet_path3 = get_file_path(os.environ["controlnet_name3"], subfolder=os.environ["controlnet_dir1"])
    controlnet_path4 = get_file_path(os.environ["controlnet_name4"], subfolder=os.environ["controlnet_dir1"])
    vae_path = get_file_path(os.environ["vae_name"], subfolder=os.environ["vae_dir"])

    # Load the Stable Diffusion model
    sd_pipe = StableDiffusionPipeline.from_single_file(
        refine_sd_model_path,
        torch_dtype=torch_dtype,
        variant="fp16", 
        use_safetensors=True
    ).to(device)
    
    # controlnet_path = "models/cn/control_v11p_sd15_canny.pth"
    controlnet1 = ControlNetModel.from_single_file(
        controlnet_path3,
        torch_dtype=torch_dtype
    ).to(device)
    
    # Load the ControlNet model
    controlnet2 = ControlNetModel.from_single_file(
        controlnet_path4,
        torch_dtype=torch_dtype
    ).to(device)

    # Create the ControlNet pipeline
    refine_gen_pipe = StableDiffusionControlNetPipeline(
        vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype).to(device),
        text_encoder=sd_pipe.text_encoder,
        tokenizer=sd_pipe.tokenizer,
        unet=sd_pipe.unet,
        scheduler=sd_pipe.scheduler,
        safety_checker=sd_pipe.safety_checker,
        feature_extractor=sd_pipe.feature_extractor,
        controlnet=[controlnet1, controlnet2],  # 複数のControlNetを指定
    ).to(device)

    # スケジューラーの設定
    refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config)

    return refine_gen_pipe

def get_wd_tags(images: list) -> list:
    global model
    if model is None:
        model = load_wd14_tagger_model()
    preprocessed_images = [wd14_preprocess_image(img) for img in images]
    preprocessed_images = np.array(preprocessed_images)
    return generate_tags(preprocessed_images, os.environ["wd_model_name"], model)

def preprocess_image_for_generation(image):
    if isinstance(image, str):  # base64文字列の場合
        image = Image.open(io.BytesIO(base64.b64decode(image)))
    elif isinstance(image, np.ndarray):  # numpy配列の場合
        image = Image.fromarray(image)
    elif not isinstance(image, Image.Image):
        raise ValueError("Unsupported image type")
    
    # 画像サイズの計算
    input_width, input_height = image.size
    max_size = 736
    output_width = max_size if input_height < input_width else int(input_width / input_height * max_size)
    output_height = max_size if input_height > input_width else int(input_height / input_width * max_size)
    
    image = image.resize((output_width, output_height))
    return image, output_width, output_height

def binarize_image(image: Image.Image) -> np.ndarray:
    image = np.array(image.convert('L'))
    # 色反転
    image = 255 - image
    
    # ヒストグラム平坦化
    clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8, 8))
    image = clahe.apply(image)

    # ガウシアンブラー適用
    image = cv2.GaussianBlur(image, (5, 5), 0)

    # 適応的二値化
    binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 9, -8)

    return binary_image

def create_rgba_image(binary_image: np.ndarray, color: list) -> Image.Image:
    rgba_image = np.zeros((binary_image.shape[0], binary_image.shape[1], 4), dtype=np.uint8)
    rgba_image[:, :, 0] = color[0]
    rgba_image[:, :, 1] = color[1]
    rgba_image[:, :, 2] = color[2]
    rgba_image[:, :, 3] = binary_image
    return Image.fromarray(rgba_image, 'RGBA')

def generate_sotai_image(input_image: Image.Image, output_width: int, output_height: int) -> Image.Image:
    input_image = ensure_rgb(input_image)
    global sotai_gen_pipe
    if sotai_gen_pipe is None:
        raise ValueError("Model is not initialized")
        # initialize()

    prompt = "anime pose, girl, (white background:1.5), (monochrome:1.5), full body, sketch, eyes, breasts, (slim legs, skinny legs:1.2)"
    try:
        # 入力画像のリサイズ
        if input_image.size[0] > input_image.size[1]:
            input_image = input_image.resize((512, int(512 * input_image.size[1] / input_image.size[0])))
        else:
            input_image = input_image.resize((int(512 * input_image.size[0] / input_image.size[1]), 512))

        # EasyNegativeV2の内容
        easy_negative_v2 = "(worst quality, low quality, normal quality:1.4), lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, artist name, (bad_prompt_version2:0.8)"

        output = sotai_gen_pipe(
            prompt,
            image=[input_image, input_image],
            negative_prompt=f"(wings:1.6), (clothes, garment, lighting, gray, missing limb, extra line, extra limb, extra arm, extra legs, hair, bangs, fringe, forelock, front hair, fill:1.4), (ink pool:1.6)",
            # negative_prompt=f"{easy_negative_v2}, (wings:1.6), (clothes, garment, lighting, gray, missing limb, extra line, extra limb, extra arm, extra legs, hair, bangs, fringe, forelock, front hair, fill:1.4), (ink pool:1.6)",
            num_inference_steps=20,
            guidance_scale=8,
            width=output_width,
            height=output_height,
            denoising_strength=0.13,
            num_images_per_prompt=1,  # Equivalent to batch_size
            guess_mode=[True, True],  # Equivalent to pixel_perfect
            controlnet_conditioning_scale=[1.4, 1.3],  # 各ControlNetの重み
            guidance_start=[0.0, 0.0],
            guidance_end=[1.0, 1.0],
        )
        generated_image = output.images[0]
        
        return generated_image

    finally:
        # メモリ解放
        if device == "cuda":
            torch.cuda.empty_cache()
        gc.collect()

def generate_refined_image(prompt: str, original_image: Image.Image, output_width: int, output_height: int, weight1: float, weight2: float) -> Image.Image:
    original_image = ensure_rgb(original_image)
    global refine_gen_pipe
    if refine_gen_pipe is None:
        raise ValueError("Model is not initialized")
        # initialize()

    try:
        original_image_np = np.array(original_image)
        # scribble_xdog
        scribble_image, _ = scribble_xdog(original_image_np, 2048, 20)

        original_image = original_image.resize((output_width, output_height))
        output = refine_gen_pipe(
            prompt,
            image=[scribble_image, original_image],  # 2つのControlNetに対応する入力画像
            negative_prompt="extra limb, monochrome, black and white",
            num_inference_steps=20,
            width=output_width,
            height=output_height,
            controlnet_conditioning_scale=[weight1, weight2],  # 各ControlNetの重み
            control_guidance_start=[0.0, 0.0],
            control_guidance_end=[1.0, 1.0],
            guess_mode=[False, False],  # pixel_perfect
        )
        generated_image = output.images[0]
        
        return generated_image

    finally:
        # メモリ解放
        if device == "cuda":
            torch.cuda.empty_cache()
        gc.collect()

def process_image(input_image, mode: str, weight1: float = 0.4, weight2: float = 0.3):
    input_image = ensure_rgb(input_image)
    # サイズを取得
    input_width, input_height = input_image.size
    max_size = 736
    output_width = max_size if input_height < input_width else int(input_width / input_height * max_size)
    output_height = max_size if input_height > input_width else int(input_height / input_width * max_size)

    if mode == "refine":
        # WD-14 taggerを使用してプロンプトを生成
        image_np = np.array(ensure_rgb(input_image))
        prompt = get_wd_tags([image_np])[0]
        prompt = f"{prompt}"

        refined_image = generate_refined_image(prompt, input_image, output_width, output_height, weight1, weight2)
        refined_image = refined_image.convert('RGB')

        # スケッチ画像を生成
        refined_image_np = np.array(refined_image)
        sketch_image = get_sketch(refined_image_np, "both", 2048, 10)
        sketch_image = sketch_image.resize((output_width, output_height))  # 画像サイズを合わせる
        # スケッチ画像の二値化
        sketch_binary = binarize_image(sketch_image)
        # RGBAに変換(透明なベース画像を作成)して、青い線を設定
        sketch_image = create_rgba_image(sketch_binary, [0, 0, 255])

        # 素体画像の生成
        sotai_image = generate_sotai_image(refined_image, output_width, output_height)

    elif mode == "original":
        sotai_image = generate_sotai_image(input_image, output_width, output_height)
        
        # スケッチ画像の生成
        input_image_np = np.array(input_image)
        sketch_image = get_sketch(input_image_np, "both", 2048, 16)

    elif mode == "sketch":
        # スケッチ画像の生成
        input_image_np = np.array(input_image)
        sketch_image = get_sketch(input_image_np, "both", 2048, 16)
        
        # 素体画像の生成
        sotai_image = generate_sotai_image(sketch_image, output_width, output_height)

    else:
        raise ValueError("Invalid mode")

    # 素体画像の二値化
    sotai_binary = binarize_image(sotai_image)
    # RGBAに変換(透明なベース画像を作成)して、赤い線を設定
    sotai_image = create_rgba_image(sotai_binary, [255, 0, 0])

    return sotai_image, sketch_image

def image_to_base64(img_array):
    buffered = io.BytesIO()
    img_array.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()

def process_image_as_base64(input_image, mode: str, weight1: float = 0.4, weight2: float = 0.3):
    sotai_image, sketch_image = process_image(input_image, mode, weight1, weight2)
    return image_to_base64(sotai_image), image_to_base64(sketch_image)