Spaces:
Sleeping
Sleeping
gpu
Browse files
app.py
CHANGED
@@ -125,31 +125,6 @@ try:
|
|
125 |
plt.close(fig)
|
126 |
return fig
|
127 |
|
128 |
-
def setup(model_dict, input_image=None):
|
129 |
-
global model, device, x, test_imgs, points, mean_vector_list
|
130 |
-
# str -> dictに変換
|
131 |
-
if type(model_dict) == str:
|
132 |
-
model_dict = eval(model_dict)
|
133 |
-
model_name = model_dict["name"]
|
134 |
-
feature_dim = model_dict["feature_dim"]
|
135 |
-
model_path = f"checkpoints/{model_name}"
|
136 |
-
model, device = load_model(model_path, feature_dim)
|
137 |
-
x = load_data(device)
|
138 |
-
test_imgs, points = load_keypoints(device)
|
139 |
-
feature_map, _ = model(test_imgs)
|
140 |
-
mean_vector_list = utils.get_mean_vector(feature_map, points)
|
141 |
-
|
142 |
-
if input_image is not None:
|
143 |
-
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
144 |
-
return fig
|
145 |
-
|
146 |
-
|
147 |
-
models = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
148 |
-
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
149 |
-
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
150 |
-
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
151 |
-
|
152 |
-
setup(models[0])
|
153 |
except:
|
154 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
155 |
if type(uploaded_image) == str:
|
@@ -196,32 +171,31 @@ except:
|
|
196 |
plt.close(fig)
|
197 |
return fig
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
if input_image is not None:
|
214 |
-
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
215 |
-
return fig
|
216 |
-
|
217 |
-
|
218 |
-
models = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
219 |
-
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
220 |
-
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
221 |
-
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
222 |
|
223 |
-
|
|
|
|
|
|
|
224 |
|
|
|
225 |
|
226 |
with gr.Blocks() as demo:
|
227 |
# title
|
|
|
125 |
plt.close(fig)
|
126 |
return fig
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
except:
|
129 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
130 |
if type(uploaded_image) == str:
|
|
|
171 |
plt.close(fig)
|
172 |
return fig
|
173 |
|
174 |
+
def setup(model_dict, input_image=None):
|
175 |
+
global model, device, x, test_imgs, points, mean_vector_list
|
176 |
+
# str -> dictに変換
|
177 |
+
if type(model_dict) == str:
|
178 |
+
model_dict = eval(model_dict)
|
179 |
+
model_name = model_dict["name"]
|
180 |
+
feature_dim = model_dict["feature_dim"]
|
181 |
+
model_path = f"checkpoints/{model_name}"
|
182 |
+
model, device = load_model(model_path, feature_dim)
|
183 |
+
x = load_data(device)
|
184 |
+
test_imgs, points = load_keypoints(device)
|
185 |
+
feature_map, _ = model(test_imgs)
|
186 |
+
mean_vector_list = utils.get_mean_vector(feature_map, points)
|
187 |
+
|
188 |
+
if input_image is not None:
|
189 |
+
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
190 |
+
return fig
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
models = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
194 |
+
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
195 |
+
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
196 |
+
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
197 |
|
198 |
+
setup(models[0])
|
199 |
|
200 |
with gr.Blocks() as demo:
|
201 |
# title
|