|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Generate images and shapes using pretrained network pickle.""" |
|
|
|
import os |
|
import re |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import click |
|
import dnnlib |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from tqdm import tqdm |
|
import mrcfile |
|
|
|
|
|
import legacy |
|
from camera_utils import LookAtPoseSampler, FOV_to_intrinsics |
|
from torch_utils import misc |
|
from training.triplane import TriPlaneGenerator |
|
|
|
|
|
|
|
|
|
def parse_range(s: Union[str, List]) -> List[int]: |
|
'''Parse a comma separated list of numbers or ranges and return a list of ints. |
|
|
|
Example: '1,2,5-10' returns [1, 2, 5, 6, 7] |
|
''' |
|
if isinstance(s, list): return s |
|
ranges = [] |
|
range_re = re.compile(r'^(\d+)-(\d+)$') |
|
for p in s.split(','): |
|
if m := range_re.match(p): |
|
ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) |
|
else: |
|
ranges.append(int(p)) |
|
return ranges |
|
|
|
|
|
|
|
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]: |
|
'''Parse a floating point 2-vector of syntax 'a,b'. |
|
|
|
Example: |
|
'0,1' returns (0,1) |
|
''' |
|
if isinstance(s, tuple): return s |
|
parts = s.split(',') |
|
if len(parts) == 2: |
|
return (float(parts[0]), float(parts[1])) |
|
raise ValueError(f'cannot parse 2-vector {s}') |
|
|
|
|
|
|
|
def make_transform(translate: Tuple[float,float], angle: float): |
|
m = np.eye(3) |
|
s = np.sin(angle/360.0*np.pi*2) |
|
c = np.cos(angle/360.0*np.pi*2) |
|
m[0][0] = c |
|
m[0][1] = s |
|
m[0][2] = translate[0] |
|
m[1][0] = -s |
|
m[1][1] = c |
|
m[1][2] = translate[1] |
|
return m |
|
|
|
|
|
|
|
def create_samples(N=256, voxel_origin=[0, 0, 0], cube_length=2.0): |
|
|
|
voxel_origin = np.array(voxel_origin) - cube_length/2 |
|
voxel_size = cube_length / (N - 1) |
|
|
|
overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor()) |
|
samples = torch.zeros(N ** 3, 3) |
|
|
|
|
|
|
|
samples[:, 2] = overall_index % N |
|
samples[:, 1] = (overall_index.float() / N) % N |
|
samples[:, 0] = ((overall_index.float() / N) / N) % N |
|
|
|
|
|
|
|
samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2] |
|
samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1] |
|
samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0] |
|
|
|
num_samples = N ** 3 |
|
|
|
return samples.unsqueeze(0), voxel_origin, voxel_size |
|
|
|
|
|
|
|
@click.command() |
|
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True) |
|
@click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True) |
|
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True) |
|
@click.option('--trunc-cutoff', 'truncation_cutoff', type=int, help='Truncation cutoff', default=14, show_default=True) |
|
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)') |
|
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR') |
|
@click.option('--shapes', help='Export shapes as .mrc files viewable in ChimeraX', type=bool, required=False, metavar='BOOL', default=False, show_default=True) |
|
@click.option('--shape-res', help='', type=int, required=False, metavar='int', default=512, show_default=True) |
|
@click.option('--fov-deg', help='Field of View of camera in degrees', type=int, required=False, metavar='float', default=18.837, show_default=True) |
|
@click.option('--shape-format', help='Shape Format', type=click.Choice(['.mrc', '.ply']), default='.mrc') |
|
@click.option('--reload_modules', help='Overload persistent modules?', type=bool, required=False, metavar='BOOL', default=False, show_default=True) |
|
def generate_images( |
|
network_pkl: str, |
|
seeds: List[int], |
|
truncation_psi: float, |
|
truncation_cutoff: int, |
|
outdir: str, |
|
shapes: bool, |
|
shape_res: int, |
|
fov_deg: float, |
|
shape_format: str, |
|
class_idx: Optional[int], |
|
reload_modules: bool, |
|
): |
|
"""Generate images using pretrained network pickle. |
|
|
|
Examples: |
|
|
|
\b |
|
# Generate an image using pre-trained FFHQ model. |
|
python gen_samples.py --outdir=output --trunc=0.7 --seeds=0-5 --shapes=True\\ |
|
--network=ffhq-rebalanced-128.pkl |
|
""" |
|
|
|
print('Loading networks from "%s"...' % network_pkl) |
|
device = torch.device('cuda') |
|
with dnnlib.util.open_url(network_pkl) as f: |
|
G = legacy.load_network_pkl(f)['G_ema'].to(device) |
|
|
|
|
|
if reload_modules: |
|
print("Reloading Modules!") |
|
G_new = TriPlaneGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device) |
|
misc.copy_params_and_buffers(G, G_new, require_all=True) |
|
G_new.neural_rendering_resolution = G.neural_rendering_resolution |
|
G_new.rendering_kwargs = G.rendering_kwargs |
|
G = G_new |
|
|
|
os.makedirs(outdir, exist_ok=True) |
|
|
|
cam2world_pose = LookAtPoseSampler.sample(3.14/2, 3.14/2, torch.tensor([0, 0, 0.2], device=device), radius=2.7, device=device) |
|
intrinsics = FOV_to_intrinsics(fov_deg, device=device) |
|
|
|
|
|
for seed_idx, seed in enumerate(seeds): |
|
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) |
|
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) |
|
|
|
imgs = [] |
|
angle_p = -0.2 |
|
for angle_y, angle_p in [(.4, angle_p), (0, angle_p), (-.4, angle_p)]: |
|
cam_pivot = torch.tensor(G.rendering_kwargs.get('avg_camera_pivot', [0, 0, 0]), device=device) |
|
cam_radius = G.rendering_kwargs.get('avg_camera_radius', 2.7) |
|
cam2world_pose = LookAtPoseSampler.sample(np.pi/2 + angle_y, np.pi/2 + angle_p, cam_pivot, radius=cam_radius, device=device) |
|
conditioning_cam2world_pose = LookAtPoseSampler.sample(np.pi/2, np.pi/2, cam_pivot, radius=cam_radius, device=device) |
|
camera_params = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1) |
|
conditioning_params = torch.cat([conditioning_cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1) |
|
|
|
ws = G.mapping(z, conditioning_params, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff) |
|
img = G.synthesis(ws, camera_params)['image'] |
|
|
|
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
imgs.append(img) |
|
|
|
img = torch.cat(imgs, dim=2) |
|
|
|
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png') |
|
|
|
if shapes: |
|
|
|
max_batch=1000000 |
|
|
|
samples, voxel_origin, voxel_size = create_samples(N=shape_res, voxel_origin=[0, 0, 0], cube_length=G.rendering_kwargs['box_warp'] * 1) |
|
samples = samples.to(z.device) |
|
sigmas = torch.zeros((samples.shape[0], samples.shape[1], 1), device=z.device) |
|
transformed_ray_directions_expanded = torch.zeros((samples.shape[0], max_batch, 3), device=z.device) |
|
transformed_ray_directions_expanded[..., -1] = -1 |
|
|
|
head = 0 |
|
with tqdm(total = samples.shape[1]) as pbar: |
|
with torch.no_grad(): |
|
while head < samples.shape[1]: |
|
torch.manual_seed(0) |
|
sigma = G.sample(samples[:, head:head+max_batch], transformed_ray_directions_expanded[:, :samples.shape[1]-head], z, conditioning_params, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, noise_mode='const')['sigma'] |
|
sigmas[:, head:head+max_batch] = sigma |
|
head += max_batch |
|
pbar.update(max_batch) |
|
|
|
sigmas = sigmas.reshape((shape_res, shape_res, shape_res)).cpu().numpy() |
|
sigmas = np.flip(sigmas, 0) |
|
|
|
|
|
pad = int(30 * shape_res / 256) |
|
pad_value = -1000 |
|
sigmas[:pad] = pad_value |
|
sigmas[-pad:] = pad_value |
|
sigmas[:, :pad] = pad_value |
|
sigmas[:, -pad:] = pad_value |
|
sigmas[:, :, :pad] = pad_value |
|
sigmas[:, :, -pad:] = pad_value |
|
|
|
if shape_format == '.ply': |
|
from shape_utils import convert_sdf_samples_to_ply |
|
convert_sdf_samples_to_ply(np.transpose(sigmas, (2, 1, 0)), [0, 0, 0], 1, os.path.join(outdir, f'seed{seed:04d}.ply'), level=10) |
|
elif shape_format == '.mrc': |
|
with mrcfile.new_mmap(os.path.join(outdir, f'seed{seed:04d}.mrc'), overwrite=True, shape=sigmas.shape, mrc_mode=2) as mrc: |
|
mrc.data[:] = sigmas |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
generate_images() |
|
|
|
|
|
|