gavinyuan
add: PIPNet, arcface
b9be4e6
import torch.utils.data as data
import torch
from PIL import Image, ImageFilter
import os, cv2
import numpy as np
import random
from scipy.stats import norm
from math import floor
def random_translate(image, target):
if random.random() > 0.5:
image_height, image_width = image.size
a = 1
b = 0
#c = 30 #left/right (i.e. 5/-5)
c = int((random.random()-0.5) * 60)
d = 0
e = 1
#f = 30 #up/down (i.e. 5/-5)
f = int((random.random()-0.5) * 60)
image = image.transform(image.size, Image.AFFINE, (a, b, c, d, e, f))
target_translate = target.copy()
target_translate = target_translate.reshape(-1, 2)
target_translate[:, 0] -= 1.*c/image_width
target_translate[:, 1] -= 1.*f/image_height
target_translate = target_translate.flatten()
target_translate[target_translate < 0] = 0
target_translate[target_translate > 1] = 1
return image, target_translate
else:
return image, target
def random_blur(image):
if random.random() > 0.7:
image = image.filter(ImageFilter.GaussianBlur(random.random()*5))
return image
def random_occlusion(image):
if random.random() > 0.5:
image_np = np.array(image).astype(np.uint8)
image_np = image_np[:,:,::-1]
image_height, image_width, _ = image_np.shape
occ_height = int(image_height*0.4*random.random())
occ_width = int(image_width*0.4*random.random())
occ_xmin = int((image_width - occ_width - 10) * random.random())
occ_ymin = int((image_height - occ_height - 10) * random.random())
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 0] = int(random.random() * 255)
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 1] = int(random.random() * 255)
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 2] = int(random.random() * 255)
image_pil = Image.fromarray(image_np[:,:,::-1].astype('uint8'), 'RGB')
return image_pil
else:
return image
def random_flip(image, target, points_flip):
if random.random() > 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
target = np.array(target).reshape(-1, 2)
target = target[points_flip, :]
target[:,0] = 1-target[:,0]
target = target.flatten()
return image, target
else:
return image, target
def random_rotate(image, target, angle_max):
if random.random() > 0.5:
center_x = 0.5
center_y = 0.5
landmark_num= int(len(target) / 2)
target_center = np.array(target) - np.array([center_x, center_y]*landmark_num)
target_center = target_center.reshape(landmark_num, 2)
theta_max = np.radians(angle_max)
theta = random.uniform(-theta_max, theta_max)
angle = np.degrees(theta)
image = image.rotate(angle)
c, s = np.cos(theta), np.sin(theta)
rot = np.array(((c,-s), (s, c)))
target_center_rot = np.matmul(target_center, rot)
target_rot = target_center_rot.reshape(landmark_num*2) + np.array([center_x, center_y]*landmark_num)
return image, target_rot
else:
return image, target
def gen_target_pip(target, meanface_indices, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y):
num_nb = len(meanface_indices[0])
map_channel, map_height, map_width = target_map.shape
target = target.reshape(-1, 2)
assert map_channel == target.shape[0]
for i in range(map_channel):
mu_x = int(floor(target[i][0] * map_width))
mu_y = int(floor(target[i][1] * map_height))
mu_x = max(0, mu_x)
mu_y = max(0, mu_y)
mu_x = min(mu_x, map_width-1)
mu_y = min(mu_y, map_height-1)
target_map[i, mu_y, mu_x] = 1
shift_x = target[i][0] * map_width - mu_x
shift_y = target[i][1] * map_height - mu_y
target_local_x[i, mu_y, mu_x] = shift_x
target_local_y[i, mu_y, mu_x] = shift_y
for j in range(num_nb):
nb_x = target[meanface_indices[i][j]][0] * map_width - mu_x
nb_y = target[meanface_indices[i][j]][1] * map_height - mu_y
target_nb_x[num_nb*i+j, mu_y, mu_x] = nb_x
target_nb_y[num_nb*i+j, mu_y, mu_x] = nb_y
return target_map, target_local_x, target_local_y, target_nb_x, target_nb_y
class ImageFolder_pip(data.Dataset):
def __init__(self, root, imgs, input_size, num_lms, net_stride, points_flip, meanface_indices, transform=None, target_transform=None):
self.root = root
self.imgs = imgs
self.num_lms = num_lms
self.net_stride = net_stride
self.points_flip = points_flip
self.meanface_indices = meanface_indices
self.num_nb = len(meanface_indices[0])
self.transform = transform
self.target_transform = target_transform
self.input_size = input_size
def __getitem__(self, index):
img_name, target = self.imgs[index]
img = Image.open(os.path.join(self.root, img_name)).convert('RGB')
img, target = random_translate(img, target)
img = random_occlusion(img)
img, target = random_flip(img, target, self.points_flip)
img, target = random_rotate(img, target, 30)
img = random_blur(img)
target_map = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_map, target_local_x, target_local_y, target_nb_x, target_nb_y = gen_target_pip(target, self.meanface_indices, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y)
target_map = torch.from_numpy(target_map).float()
target_local_x = torch.from_numpy(target_local_x).float()
target_local_y = torch.from_numpy(target_local_y).float()
target_nb_x = torch.from_numpy(target_nb_x).float()
target_nb_y = torch.from_numpy(target_nb_y).float()
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target_map = self.target_transform(target_map)
target_local_x = self.target_transform(target_local_x)
target_local_y = self.target_transform(target_local_y)
target_nb_x = self.target_transform(target_nb_x)
target_nb_y = self.target_transform(target_nb_y)
return img, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y
def __len__(self):
return len(self.imgs)
if __name__ == '__main__':
pass