Spaces:
Sleeping
Sleeping
File size: 11,437 Bytes
4c45953 f839da7 cd377f8 f839da7 4c45953 f839da7 4c45953 6202886 a9f2b23 4c45953 a9f2b23 4c45953 a9f2b23 4c45953 cd377f8 5da87aa 4c45953 a9f2b23 4c45953 cd377f8 a9f2b23 4c45953 cd377f8 4c45953 5da87aa f839da7 cd377f8 f839da7 5da87aa f839da7 5da87aa f839da7 5da87aa f839da7 5da87aa f839da7 4c45953 f839da7 4c45953 a9f2b23 4c45953 f839da7 4c45953 a9f2b23 4c45953 cd377f8 5cf4ee2 cd377f8 5cf4ee2 5da87aa 5cf4ee2 5da87aa 5cf4ee2 5da87aa 5cf4ee2 4c45953 5da87aa 4c45953 a9f2b23 4c45953 5da87aa 4c45953 a9f2b23 4c45953 cd377f8 4c45953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import json
import os
import time
from random import randint
import psutil
import streamlit as st
import torch
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
TextIteratorStreamer,
pipeline,
set_seed,
)
device = torch.cuda.device_count() - 1
TRANSLATION_NL_TO_EN = "translation_en_to_nl"
@st.cache_resource()
def load_model(model_name, task):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
try:
if not os.path.exists(".streamlit/secrets.toml"):
raise FileNotFoundError
access_token = st.secrets.get("netherator")
except FileNotFoundError:
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
if tokenizer.pad_token is None:
print("Adding pad_token to the tokenizer")
tokenizer.pad_token = tokenizer.eos_token
auto_model_class = (
AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM
)
model = auto_model_class.from_pretrained(model_name, use_auth_token=access_token)
if device != -1:
model.to(f"cuda:{device}")
return tokenizer, model
class StreamlitTextIteratorStreamer(TextIteratorStreamer):
def __init__(
self, output_placeholder, tokenizer, skip_prompt=False, **decode_kwargs
):
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
self.output_placeholder = output_placeholder
self.output_text = ""
def on_finalized_text(self, text: str, stream_end: bool = False):
self.output_text += text
self.output_placeholder.markdown(self.output_text, unsafe_allow_html=True)
super().on_finalized_text(text, stream_end)
class Generator:
def __init__(self, model_name, task, desc):
self.model_name = model_name
self.task = task
self.desc = desc
self.tokenizer = None
self.model = None
self.pipeline = None
self.load()
def load(self):
if not self.model:
print(f"Loading model {self.model_name}")
self.tokenizer, self.model = load_model(self.model_name, self.task)
def generate(self, text: str, streamer=None, **generate_kwargs) -> (str, dict):
batch_encoded = self.tokenizer(
text,
max_length=generate_kwargs["max_length"],
padding=False,
truncation=False,
return_tensors="pt",
)
if device != -1:
batch_encoded.to(f"cuda:{device}")
logits = self.model.generate(
batch_encoded["input_ids"],
attention_mask=batch_encoded["attention_mask"],
streamer=streamer,
**generate_kwargs,
)
decoded_preds = self.tokenizer.batch_decode(
logits.cpu().numpy(), skip_special_tokens=False
)
def replace_tokens(pred):
pred = pred.replace("<pad> ", "").replace("<pad>", "").replace("</s>", "")
if hasattr(self.tokenizer, "newline_token"):
pred = pred.replace(self.tokenizer.newline_token, "\n")
return pred
decoded_preds = list(map(replace_tokens, decoded_preds))
return decoded_preds[0], generate_kwargs
class GeneratorFactory:
def __init__(self):
self.generators = []
def instantiate_generators(self):
GENERATOR_LIST = [
{
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
"desc": "GPT-Neo Small Dutch(book finetune)",
"task": "text-generation",
},
{
"model_name": "yhavinga/gpt2-medium-dutch-nedd",
"desc": "GPT2 Medium Dutch (book finetune)",
"task": "text-generation",
},
# {
# "model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
# "desc": "Dutch<->English T5 small 24 layers",
# "task": TRANSLATION_NL_TO_EN,
# },
]
for g in GENERATOR_LIST:
with st.spinner(text=f"Loading the model {g['desc']} ..."):
self.add_generator(**g)
return self
def add_generator(self, model_name, task, desc):
# If the generator is not yet present, add it
if not self.get_generator(model_name=model_name, task=task, desc=desc):
g = Generator(model_name, task, desc)
g.load()
self.generators.append(g)
def get_generator(self, **kwargs):
for g in self.generators:
if all([g.__dict__.get(k) == v for k, v in kwargs.items()]):
return g
return None
def gpt_descs(self):
return [g.desc for g in self.generators if g.task == "text-generation"]
def main():
st.set_page_config( # Alternate names: setup_page, page, layout
page_title="Netherator", # String or None. Strings get appended with "• Streamlit".
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed"
page_icon="📚", # String, anything supported by st.image, or None.
)
if "generators" not in st.session_state:
st.session_state["generators"] = GeneratorFactory().instantiate_generators()
generators = st.session_state["generators"]
with open("style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
st.sidebar.markdown(
"""# Netherator
Nederlandse verhalenverteller"""
)
model_desc = st.sidebar.selectbox("Model", generators.gpt_descs(), index=1)
st.sidebar.title("Parameters:")
if "prompt_box" not in st.session_state:
st.session_state["prompt_box"] = "Het was een koude winterdag"
st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box)
max_length = st.sidebar.number_input(
"Lengte van de tekst",
value=200,
max_value=512,
)
no_repeat_ngram_size = st.sidebar.number_input(
"No-repeat NGram size", min_value=1, max_value=5, value=3
)
repetition_penalty = st.sidebar.number_input(
"Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
)
num_return_sequences = 1
# st.sidebar.number_input(
# "Num return sequences", min_value=1, max_value=5, value=1
# )
seed_placeholder = st.sidebar.empty()
if "seed" not in st.session_state:
print(f"Session state does not contain seed")
st.session_state["seed"] = 4162549114
print(f"Seed is set to: {st.session_state['seed']}")
seed = seed_placeholder.number_input(
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
)
def set_random_seed():
st.session_state["seed"] = randint(0, 2**32 - 1)
seed = seed_placeholder.number_input(
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
)
print(f"New random seed set to: {seed}")
if st.button("New random seed?"):
set_random_seed()
if sampling_mode := st.sidebar.selectbox(
"select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
):
if sampling_mode == "Beam Search":
num_beams = st.sidebar.number_input(
"Num beams", min_value=1, max_value=10, value=4
)
length_penalty = st.sidebar.number_input(
"Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"num_beams": num_beams,
"early_stopping": True,
"length_penalty": length_penalty,
}
else:
top_k = st.sidebar.number_input(
"Top K", min_value=0, max_value=100, value=50
)
top_p = st.sidebar.number_input(
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
)
temperature = st.sidebar.number_input(
"Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"do_sample": True,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
}
st.sidebar.markdown(
"""For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
)
if st.button("Run"):
memory = psutil.virtual_memory()
st.subheader("Result")
container = st.container()
output_placeholder = container.empty()
streaming_enabled = True # sampling_mode != "Beam Search" or num_beams == 1
generator = generators.get_generator(desc=model_desc)
streamer = (
StreamlitTextIteratorStreamer(output_placeholder, generator.tokenizer)
if streaming_enabled
else None
)
set_seed(seed)
time_start = time.time()
result = generator.generate(
text=st.session_state.text, streamer=streamer, **params
)
time_end = time.time()
time_diff = time_end - time_start
# for text in result:
# st.write(text.get("generated_text").replace("\n", " \n"))
# st.text("*Translation*")
# translate_params = {
# "num_return_sequences": 1,
# "num_beams": 4,
# "early_stopping": True,
# "length_penalty": 1.1,
# "max_length": 200,
# }
# text_lines = [
# "translate Dutch to English: " + t
# for t in text.get("generated_text").splitlines()
# ]
# translated_lines = [
# t["translation_text"]
# for t in generators.get_generator(
# task=TRANSLATION_NL_TO_EN
# ).get_text(text_lines, **translate_params)
# ]
# translation = " \n".join(translated_lines)
# st.write(translation)
# st.write("---")
#
info = f"""
---
*Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB*
*Text generated using seed {seed} in {time_diff:.5} seconds*
"""
st.write(info)
params["seed"] = seed
params["prompt"] = st.session_state.text
params["model"] = generator.model_name
params_text = json.dumps(params)
# print(params_text)
st.json(params_text)
if __name__ == "__main__":
main()
|