File size: 1,323 Bytes
997da96 864cbcc 4557b21 7312dc7 997da96 0ce8030 997da96 aff340b 997da96 864cbcc 4557b21 7312dc7 8267b4f 997da96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from transformers import pipeline
from PIL import Image
import numpy as np
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
def main():
st.title("text-classification")
with st.form("text_field"):
uploaded_file = st.file_uploader("Upload Files",type=['png','jpeg','jpg'])
if uploaded_file!=None:
img=Image.open(uploaded_file)
extractor = AutoFeatureExtractor.from_pretrained("yangy50/garbage-classification")
model = AutoModelForImageClassification.from_pretrained("yangy50/garbage-classification")
inputs = extractor(img,return_tensors="pt")
outputs = model(**inputs)
label_num=outputs.logits.softmax(1).argmax(1)
label_num=label_num.item()
st.write("The prediction class is:")
if label_num==0:
st.write("cardboard")
elif label_num==1:
st.write("glass")
elif label_num==2:
st.write("metal")
elif label_num==3:
st.write("paper")
elif label_num==4:
st.write("plastic")
else:
st.write("trash")
st.image(img)
if __name__ == "__main__":
main() |