File size: 1,323 Bytes
997da96
864cbcc
4557b21
7312dc7
 
997da96
0ce8030
997da96
aff340b
997da96
864cbcc
4557b21
7312dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8267b4f
997da96
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import streamlit as st
from transformers import pipeline
from PIL import Image
import numpy as np
from transformers import AutoFeatureExtractor, AutoModelForImageClassification

classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
def main():
    st.title("text-classification")

    with st.form("text_field"):
        uploaded_file = st.file_uploader("Upload Files",type=['png','jpeg','jpg'])
    
    if uploaded_file!=None:

        img=Image.open(uploaded_file)

        extractor = AutoFeatureExtractor.from_pretrained("yangy50/garbage-classification")
        model = AutoModelForImageClassification.from_pretrained("yangy50/garbage-classification")

        inputs = extractor(img,return_tensors="pt")
        outputs = model(**inputs)
        label_num=outputs.logits.softmax(1).argmax(1)
        label_num=label_num.item()

        st.write("The prediction class is:")

        if label_num==0:
            st.write("cardboard")
        elif label_num==1:
            st.write("glass")
        elif label_num==2:
            st.write("metal")
        elif label_num==3:
            st.write("paper")
        elif label_num==4:
            st.write("plastic")
        else:
            st.write("trash")

        st.image(img)

if __name__ == "__main__":
    main()