Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
# Define your custom model class | |
class BigramLanguageModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# Example layers (adjust as needed for your model) | |
self.token_embedding_table = nn.Embedding(61, 64) | |
self.position_embedding_table = nn.Embedding(32, 64) | |
self.blocks = nn.Sequential(*[nn.Linear(64, 64) for _ in range(4)]) | |
self.ln_f = nn.LayerNorm(64) | |
self.lm_head = nn.Linear(64, 61) | |
def forward(self, idx): | |
# Implement the forward pass | |
pass | |
def generate(self, idx, max_new_tokens=250): | |
# Implement the generate method | |
pass | |
# Load your model | |
def load_model(): | |
model = BigramLanguageModel() | |
model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin" | |
model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True) | |
model.load_state_dict(model_weights) | |
model.eval() | |
return model | |
model = load_model() | |
# Define encode and decode functions | |
chars = sorted(list(set("your_training_text_here"))) # Replace with the character set used in training | |
stoi = {ch: i for i, ch in enumerate(chars)} | |
itos = {i: ch for i, ch in enumerate(chars)} | |
encode = lambda s: [stoi[c] for c in s] | |
decode = lambda l: ''.join([itos[i] for i in l]) | |
# Function to generate text using the model | |
def generate_text(prompt): | |
context = torch.tensor([encode(prompt)], dtype=torch.long) | |
with torch.no_grad(): | |
generated = model.generate(context, max_new_tokens=250) # Adjust as needed | |
return decode(generated[0].tolist()) | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter a location or prompt..."), | |
outputs="text", | |
title="Triptuner Model", | |
description="Generate itineraries for locations in Sri Lanka's Central Province." | |
) | |
# Launch the interface | |
interface.launch() | |