yoonusajwardapiit's picture
Upload app.py
49b2bf5 verified
raw
history blame
4.48 kB
import gradio as gr
import torch
import torch.nn as nn
# Define your custom model class with detailed layer structures
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(64, head_size, bias=False)
self.query = nn.Linear(64, head_size, bias=False)
self.value = nn.Linear(64, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(32, 32)))
self.dropout = nn.Dropout(0.1)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = nn.functional.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
return wei @ v
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(64, 64)
self.dropout = nn.Dropout(0.1)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
return self.dropout(self.proj(out))
class FeedForward(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(0.1),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(61, 64)
self.position_embedding_table = nn.Embedding(32, 64)
self.blocks = nn.Sequential(*[Block(64, n_head=4) for _ in range(4)])
self.ln_f = nn.LayerNorm(64)
self.lm_head = nn.Linear(64, 61)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
return logits, None
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -32:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :]
probs = nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# Load the model with strict=False to handle missing or unexpected keys
def load_model():
model = BigramLanguageModel()
model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin"
model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True)
model.load_state_dict(model_weights, strict=False)
model.eval()
return model
model = load_model()
# Define encode and decode functions
chars = sorted(list(set("your_training_text_here"))) # Replace with the character set used in training
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# Function to generate text using the model
def generate_text(prompt):
context = torch.tensor([encode(prompt)], dtype=torch.long)
with torch.no_grad():
generated = model.generate(context, max_new_tokens=250) # Adjust as needed
return decode(generated[0].tolist())
# Create a Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter a location or prompt..."),
outputs="text",
title="Triptuner Model",
description="Generate itineraries for locations in Sri Lanka's Central Province."
)
# Launch the interface
interface.launch()