File size: 3,978 Bytes
079a382
 
 
 
b4f042d
6c51e38
53e6930
079a382
 
 
 
 
 
 
 
 
 
 
 
f27dee7
b4f042d
 
f27dee7
 
b4f042d
f27dee7
b4f042d
 
f27dee7
 
 
 
 
079a382
 
b4f042d
 
 
f27dee7
 
 
 
 
b4f042d
 
 
079a382
 
8a37172
 
913fdfc
f27dee7
 
 
 
b4f042d
 
f27dee7
b4f042d
f27dee7
b4f042d
 
 
 
 
 
 
 
 
 
ced387c
b4f042d
079a382
 
 
b4f042d
079a382
 
 
 
f27dee7
 
e6d416a
8a37172
 
 
 
079a382
 
8a37172
079a382
 
b4f042d
079a382
b4f042d
 
e9e83e2
 
 
16553e7
 
 
e9e83e2
16553e7
e9e83e2
 
 
 
 
079a382
 
 
 
 
 
b4f042d
079a382
 
b4f042d
 
079a382
b7d4359
8a37172
b4f042d
079a382
 
ced387c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
import torch
import spaces
from diffusers import FluxInpaintPipeline
from PIL import Image, ImageFile

#ImageFile.LOAD_TRUNCATED_IMAGES = True

# Initialize the pipeline
pipe = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.load_lora_weights(
    "ali-vilab/In-Context-LoRA", 
    weight_name="visual-identity-design.safetensors"
)

def square_center_crop(img, target_size=768):
    if img.mode in ('RGBA', 'P'):
        img = img.convert('RGB')

    width, height = img.size
    crop_size = min(width, height)

    left = (width - crop_size) // 2
    top = (height - crop_size) // 2
    right = left + crop_size
    bottom = top + crop_size

    img_cropped = img.crop((left, top, right, bottom))
    return img_cropped.resize((target_size, target_size), Image.Resampling.LANCZOS)

def duplicate_horizontally(img):
    width, height = img.size
    if width != height:
        raise ValueError(f"Input image must be square, got {width}x{height}")

    new_image = Image.new('RGB', (width * 2, height))
    new_image.paste(img, (0, 0))
    new_image.paste(img, (width, 0))
    return new_image

# Load the mask image
mask = Image.open("mask_square.png")

@spaces.GPU
def generate(image, prompt_description, prompt_user, progress=gr.Progress(track_tqdm=True)):
    prompt_structure = "The two-panel image showcases the logo on the left and the application on the right, [LEFT] the left panel is showing "+prompt_description+" [RIGHT] this logo is applied to "
    prompt = prompt_structure + prompt_user 

    cropped_image = square_center_crop(image)
    logo_dupli = duplicate_horizontally(cropped_image)

    out = pipe(
        prompt=prompt,
        image=logo_dupli,
        mask_image=mask,
        guidance_scale=6,
        height=768,
        width=1536,
        num_inference_steps=28,
        max_sequence_length=256,
        strength=1
    ).images[0]

    width, height = out.size
    half_width = width // 2
    image_2 = out.crop((half_width, 0, width, height))
    return image_2, out

with gr.Blocks() as demo:
    gr.Markdown("# Logo in Context")
    gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Upload Logo Image",
                type="pil",
                height=384
            )
            prompt_description = gr.Textbox(
                label="Describe your logo",
                placeholder="A Hugging Face emoji logo",
            )
            prompt_input = gr.Textbox(
                label="Where should the logo be applied?",
                placeholder="e.g., a coffee cup on a wooden table"
            )
            generate_btn = gr.Button("Generate Application", variant="primary")

        with gr.Column():
            output_image = gr.Image(label="Generated Application")
            output_side = gr.Image(label="Side by side")
    
    gr.Examples(
        examples=[
            ["huggingface.png", "A Hugging Face emoji logo", "An embroidered hat"],
            ["awesome.png", "An awesome face logo", "A tattoo on a leg"],
            ["dvd_logo.png", "A DVD logo", "a flower pot"]
        ],
        inputs=[input_image, prompt_description, prompt_input],
        outputs=[output_image, output_side],
        fn=generate,
        cache_examples="lazy"
    )
    
    with gr.Row():
        gr.Markdown("""
        ### Instructions:
        1. Upload a logo image (preferably square)
        2. Describe where you'd like to see the logo applied
        3. Click 'Generate Application' and wait for the result

        Note: The generation process might take a few moments.
        """)

    # Set up the click event
    generate_btn.click(
        fn=generate,
        inputs=[input_image, prompt_description, prompt_input],
        outputs=[output_image, output_side]
    )

demo.launch()