File size: 4,176 Bytes
897bd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# %%
from datasets import Dataset, load_dataset
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM
# %%
df = pd.read_csv('data/riddles_data.csv')
df =df.sample(frac = 1)
#df = df[:1000]
# %%
df.describe()
# %%
ds = Dataset.from_pandas(df)
# %%
ds[:3]
# %%
llm_model_name="Qwen/Qwen1.5-0.5B-Chat"
model = AutoModelForCausalLM.from_pretrained(llm_model_name)
tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>')
tokenizer
# %%
def process_func(example):
MAX_LENGTH = 512
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer(f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n猜谜语:\n谜面:{example['riddle']}\n\n谜底是什么?<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens
response = tokenizer(f"谜底是:{example['label']}", add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
if len(input_ids) > MAX_LENGTH: # 做一个截断
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
print (f"{tokenizer.decode(input_ids)} Too Long")
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
# %%
tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
tokenized_id
# %%
tokenizer.decode(tokenized_id[0]['input_ids'])
# %%
tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"])))
# %%
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
#target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
inference_mode=False,
r=32,
lora_alpha=32,
lora_dropout=0.05
)
# %%
model = get_peft_model(model, config)
config
# %%
model.print_trainable_parameters()
# %%
args = TrainingArguments(
output_dir="./Qwen1.5_0.5B_Chat_sft_full",
logging_steps=10,
num_train_epochs=2,
save_steps=10,
learning_rate=1e-4,
save_on_each_node=True,
fp16=False
)
# %%
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_id,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train(resume_from_checkpoint=True)
# %%
trainer.save_model("./qwen_sft_full")
# %%
llm_model_name="Qwen/Qwen1.5-0.5B-Chat"
#model = AutoModelForCausalLM.from_pretrained(llm_model_name)
# # Load PEFT model on CPU
model = AutoPeftModelForCausalLM.from_pretrained(
"Qwen1.5_0.5B_Chat_sft_full_ckpt_200_ok/checkpoint-210",
#low_cpu_mem_usage=True,
)
# # Merge LoRA and base model and save
#merged_model = model.merge_and_unload()
#merged_model.save_pretrained("./qwen_sft",safe_serialization=False, max_shard_size="2GB")
tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>')
# %%
prompt = "谜面:一生受用(猜一字)\n谜底是什么?请解释。"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
model_inputs = tokenizer([text], return_tensors="pt").to("cpu")
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=128,
do_sample=False,
top_p=0.0
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# %%
response
# %%
|