|
''' |
|
This code script is borrowed from https://github.com/advimman/lama (discarding the segmentation mask generator). |
|
''' |
|
|
|
import math |
|
import random |
|
import hashlib |
|
from enum import Enum |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
class LinearRamp: |
|
def __init__(self, start_value=0, end_value=1, start_iter=-1, end_iter=0): |
|
self.start_value = start_value |
|
self.end_value = end_value |
|
self.start_iter = start_iter |
|
self.end_iter = end_iter |
|
|
|
def __call__(self, i): |
|
if i < self.start_iter: |
|
return self.start_value |
|
if i >= self.end_iter: |
|
return self.end_value |
|
part = (i - self.start_iter) / (self.end_iter - self.start_iter) |
|
return self.start_value * (1 - part) + self.end_value * part |
|
|
|
class DrawMethod(Enum): |
|
LINE = 'line' |
|
CIRCLE = 'circle' |
|
SQUARE = 'square' |
|
|
|
def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, |
|
draw_method=DrawMethod.LINE): |
|
draw_method = DrawMethod(draw_method) |
|
|
|
height, width = shape |
|
mask = np.zeros((height, width), np.float32) |
|
times = np.random.randint(min_times, max_times + 1) |
|
for i in range(times): |
|
start_x = np.random.randint(width) |
|
start_y = np.random.randint(height) |
|
for j in range(1 + np.random.randint(5)): |
|
angle = 0.01 + np.random.randint(max_angle) |
|
if i % 2 == 0: |
|
angle = 2 * 3.1415926 - angle |
|
length = 10 + np.random.randint(max_len) |
|
brush_w = 5 + np.random.randint(max_width) |
|
end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width) |
|
end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height) |
|
if draw_method == DrawMethod.LINE: |
|
cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w) |
|
elif draw_method == DrawMethod.CIRCLE: |
|
cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1) |
|
elif draw_method == DrawMethod.SQUARE: |
|
radius = brush_w // 2 |
|
mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1 |
|
start_x, start_y = end_x, end_y |
|
return mask[None, ...] |
|
|
|
class RandomIrregularMaskGenerator: |
|
def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None, |
|
draw_method=DrawMethod.LINE): |
|
self.max_angle = max_angle |
|
self.max_len = max_len |
|
self.max_width = max_width |
|
self.min_times = min_times |
|
self.max_times = max_times |
|
self.draw_method = draw_method |
|
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 |
|
cur_max_len = int(max(1, self.max_len * coef)) |
|
cur_max_width = int(max(1, self.max_width * coef)) |
|
cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef) |
|
return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len, |
|
max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times, |
|
draw_method=self.draw_method) |
|
|
|
def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3): |
|
height, width = shape |
|
mask = np.zeros((height, width), np.float32) |
|
bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2) |
|
times = np.random.randint(min_times, max_times + 1) |
|
for i in range(times): |
|
box_width = np.random.randint(bbox_min_size, bbox_max_size) |
|
box_height = np.random.randint(bbox_min_size, bbox_max_size) |
|
start_x = np.random.randint(margin, width - margin - box_width + 1) |
|
start_y = np.random.randint(margin, height - margin - box_height + 1) |
|
mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1 |
|
return mask[None, ...] |
|
|
|
class RandomRectangleMaskGenerator: |
|
def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None): |
|
self.margin = margin |
|
self.bbox_min_size = bbox_min_size |
|
self.bbox_max_size = bbox_max_size |
|
self.min_times = min_times |
|
self.max_times = max_times |
|
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 |
|
cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef) |
|
cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef) |
|
return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size, |
|
bbox_max_size=cur_bbox_max_size, min_times=self.min_times, |
|
max_times=cur_max_times) |
|
|
|
def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3): |
|
height, width = shape |
|
mask = np.zeros((height, width), np.float32) |
|
step_x = np.random.randint(min_step, max_step + 1) |
|
width_x = np.random.randint(min_width, min(step_x, max_width + 1)) |
|
offset_x = np.random.randint(0, step_x) |
|
|
|
step_y = np.random.randint(min_step, max_step + 1) |
|
width_y = np.random.randint(min_width, min(step_y, max_width + 1)) |
|
offset_y = np.random.randint(0, step_y) |
|
|
|
for dy in range(width_y): |
|
mask[offset_y + dy::step_y] = 1 |
|
for dx in range(width_x): |
|
mask[:, offset_x + dx::step_x] = 1 |
|
return mask[None, ...] |
|
|
|
class RandomSuperresMaskGenerator: |
|
def __init__(self, **kwargs): |
|
self.kwargs = kwargs |
|
|
|
def __call__(self, img, iter_i=None): |
|
return make_random_superres_mask(img.shape[1:], **self.kwargs) |
|
|
|
class DumbAreaMaskGenerator: |
|
min_ratio = 0.1 |
|
max_ratio = 0.35 |
|
default_ratio = 0.225 |
|
|
|
def __init__(self, is_training): |
|
|
|
|
|
self.is_training = is_training |
|
|
|
def _random_vector(self, dimension): |
|
if self.is_training: |
|
lower_limit = math.sqrt(self.min_ratio) |
|
upper_limit = math.sqrt(self.max_ratio) |
|
mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension) |
|
u = random.randint(0, dimension-mask_side-1) |
|
v = u+mask_side |
|
else: |
|
margin = (math.sqrt(self.default_ratio) / 2) * dimension |
|
u = round(dimension/2 - margin) |
|
v = round(dimension/2 + margin) |
|
return u, v |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
c, height, width = img.shape |
|
mask = np.zeros((height, width), np.float32) |
|
x1, x2 = self._random_vector(width) |
|
y1, y2 = self._random_vector(height) |
|
mask[x1:x2, y1:y2] = 1 |
|
return mask[None, ...] |
|
|
|
class OutpaintingMaskGenerator: |
|
def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5, |
|
right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False): |
|
""" |
|
is_fixed_randomness - get identical paddings for the same image if args are the same |
|
""" |
|
self.min_padding_percent = min_padding_percent |
|
self.max_padding_percent = max_padding_percent |
|
self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob] |
|
self.is_fixed_randomness = is_fixed_randomness |
|
|
|
assert self.min_padding_percent <= self.max_padding_percent |
|
assert self.max_padding_percent > 0 |
|
assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]" |
|
assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}" |
|
assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}" |
|
if len([x for x in self.probs if x > 0]) == 1: |
|
LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side") |
|
|
|
def apply_padding(self, mask, coord): |
|
mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h), |
|
int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1 |
|
return mask |
|
|
|
def get_padding(self, size): |
|
n1 = int(self.min_padding_percent*size) |
|
n2 = int(self.max_padding_percent*size) |
|
return self.rnd.randint(n1, n2) / size |
|
|
|
@staticmethod |
|
def _img2rs(img): |
|
arr = np.ascontiguousarray(img.astype(np.uint8)) |
|
str_hash = hashlib.sha1(arr).hexdigest() |
|
res = hash(str_hash)%(2**32) |
|
return res |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
c, self.img_h, self.img_w = img.shape |
|
mask = np.zeros((self.img_h, self.img_w), np.float32) |
|
at_least_one_mask_applied = False |
|
|
|
if self.is_fixed_randomness: |
|
assert raw_image is not None, f"Cant calculate hash on raw_image=None" |
|
rs = self._img2rs(raw_image) |
|
self.rnd = np.random.RandomState(rs) |
|
else: |
|
self.rnd = np.random |
|
|
|
coords = [[ |
|
(0,0), |
|
(1,self.get_padding(size=self.img_h)) |
|
], |
|
[ |
|
(0,0), |
|
(self.get_padding(size=self.img_w),1) |
|
], |
|
[ |
|
(0,1-self.get_padding(size=self.img_h)), |
|
(1,1) |
|
], |
|
[ |
|
(1-self.get_padding(size=self.img_w),0), |
|
(1,1) |
|
]] |
|
|
|
for pp, coord in zip(self.probs, coords): |
|
if self.rnd.random() < pp: |
|
at_least_one_mask_applied = True |
|
mask = self.apply_padding(mask=mask, coord=coord) |
|
|
|
if not at_least_one_mask_applied: |
|
idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs)) |
|
mask = self.apply_padding(mask=mask, coord=coords[idx]) |
|
return mask[None, ...] |
|
|
|
class ExpandMaskGenerator: |
|
def __init__(self, masking_percent:float=0.25, center:bool=True): |
|
""" |
|
center: keeping the non-masking area in center |
|
""" |
|
self.center = center |
|
self.masking_percent = masking_percent |
|
|
|
assert self.masking_percent <= 0.95 |
|
assert self.masking_percent >= 0.05 |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
""" |
|
img: c x h x w, torch tensor |
|
""" |
|
h, w = img.shape[1:] |
|
if self.center: |
|
ind_start_h = int(h * self.masking_percent / 2) |
|
ind_start_w = int(w * self.masking_percent / 2) |
|
else: |
|
ind_start_h = int(h * random.uniform(0.01, 1-self.masking_percent)) |
|
ind_start_w = int(w * random.uniform(0.01, 1-self.masking_percent)) |
|
ind_end_h = int(ind_start_h + h * (1 - self.masking_percent)) |
|
ind_end_w = int(ind_start_w + w * (1 - self.masking_percent)) |
|
|
|
mask = np.ones((1, h, w), dtype=np.float32) |
|
mask[:, ind_start_h:ind_end_h, ind_start_w:ind_end_w] = 0 |
|
|
|
return mask |
|
|
|
class HalfMaskGenerator: |
|
def __init__(self, masking_percent:float=0.25): |
|
self.masking_percent = masking_percent |
|
|
|
assert self.masking_percent <= 0.95 |
|
assert self.masking_percent >= 0.05 |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
""" |
|
img: c x h x w, torch tensor |
|
""" |
|
h, w = img.shape[1:] |
|
mask = np.zeros((1, h, w), dtype=np.float32) |
|
|
|
flag = random.random() |
|
if flag < 0.25: |
|
mask[:, int(h*self.masking_percent):, ] = 1 |
|
elif flag < 0.5: |
|
mask[:, :-int(h*self.masking_percent), ] = 1 |
|
elif flag < 0.75: |
|
mask[:, :, int(w*self.masking_percent):, ] = 1 |
|
else: |
|
mask[:, :, :-int(w*self.masking_percent), ] = 1 |
|
|
|
return mask |
|
|
|
class AlterLineMaskGenerator: |
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
""" |
|
img: c x h x w, torch tensor |
|
""" |
|
h, w = img.shape[1:] |
|
mask = np.zeros((1, h , w), dtype=np.float32) |
|
|
|
vertical = (random.random() > 0.5) |
|
if vertical: |
|
mask[:, ::2, ] = 1 |
|
else: |
|
mask[:, :, ::2] = 1 |
|
|
|
return mask |
|
|
|
class MixedMaskGenerator: |
|
def __init__(self, irregular_proba=1/3, irregular_kwargs=None, |
|
box_proba=1/3, box_kwargs=None, |
|
squares_proba=0, squares_kwargs=None, |
|
superres_proba=0, superres_kwargs=None, |
|
outpainting_proba=0, outpainting_kwargs=None, |
|
expand_proba=0, expand_kwargs=None, |
|
half_proba=0, half_kwargs=None, |
|
alterline_proba=0, |
|
invert_proba=0): |
|
self.probas = [] |
|
self.gens = [] |
|
|
|
if irregular_proba > 0: |
|
self.probas.append(irregular_proba) |
|
if irregular_kwargs is None: |
|
irregular_kwargs = {} |
|
else: |
|
irregular_kwargs = dict(irregular_kwargs) |
|
irregular_kwargs['draw_method'] = DrawMethod.LINE |
|
self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs)) |
|
|
|
if box_proba > 0: |
|
self.probas.append(box_proba) |
|
if box_kwargs is None: |
|
box_kwargs = {} |
|
self.gens.append(RandomRectangleMaskGenerator(**box_kwargs)) |
|
|
|
if squares_proba > 0: |
|
self.probas.append(squares_proba) |
|
if squares_kwargs is None: |
|
squares_kwargs = {} |
|
else: |
|
squares_kwargs = dict(squares_kwargs) |
|
squares_kwargs['draw_method'] = DrawMethod.SQUARE |
|
self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs)) |
|
|
|
if superres_proba > 0: |
|
self.probas.append(superres_proba) |
|
if superres_kwargs is None: |
|
superres_kwargs = {} |
|
self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs)) |
|
|
|
if outpainting_proba > 0: |
|
self.probas.append(outpainting_proba) |
|
if outpainting_kwargs is None: |
|
outpainting_kwargs = {} |
|
self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs)) |
|
|
|
if expand_proba > 0: |
|
self.probas.append(expand_proba) |
|
if expand_kwargs is None: |
|
expand_kwargs = {} |
|
self.gens.append(ExpandMaskGenerator(**expand_kwargs)) |
|
|
|
if half_proba > 0: |
|
self.probas.append(half_proba) |
|
if half_kwargs is None: |
|
half_kwargs = {} |
|
self.gens.append(HalfMaskGenerator(**half_kwargs)) |
|
|
|
if alterline_proba > 0: |
|
self.probas.append(alterline_proba) |
|
self.gens.append(AlterLineMaskGenerator()) |
|
|
|
self.probas = np.array(self.probas, dtype='float32') |
|
self.probas /= self.probas.sum() |
|
self.invert_proba = invert_proba |
|
|
|
def __call__(self, img, iter_i=None, raw_image=None): |
|
kind = np.random.choice(len(self.probas), p=self.probas) |
|
gen = self.gens[kind] |
|
result = gen(img, iter_i=iter_i, raw_image=raw_image) |
|
if self.invert_proba > 0 and random.random() < self.invert_proba: |
|
result = 1 - result |
|
return result |
|
|
|
def get_mask_generator(kind, kwargs): |
|
if kind is None: |
|
kind = "mixed" |
|
if kwargs is None: |
|
kwargs = {} |
|
|
|
if kind == "mixed": |
|
cl = MixedMaskGenerator |
|
elif kind == "outpainting": |
|
cl = OutpaintingMaskGenerator |
|
elif kind == "dumb": |
|
cl = DumbAreaMaskGenerator |
|
else: |
|
raise NotImplementedError(f"No such generator kind = {kind}") |
|
return cl(**kwargs) |
|
|