MolScribe / app.py
thomas0809
update checkpoint
f07373b
raw
history blame
1.95 kB
import gradio as gr
import os
import glob
import cv2
import numpy as np
import torch
from molscribe import MolScribe
from indigo import Indigo
from indigo.renderer import IndigoRenderer
from huggingface_hub import hf_hub_download
REPO_ID = "yujieq/MolScribe"
FILENAME = "swin_base_char_aux_1m.pth"
ckpt_path = hf_hub_download(REPO_ID, FILENAME)
device = torch.device('cpu')
model = MolScribe(ckpt_path, device)
def generate_mol_image(molblock):
indigo = Indigo()
render = IndigoRenderer(indigo)
indigo.setOption('render-output-format', 'png')
indigo.setOption('render-background-color', '1,1,1')
indigo.setOption('render-stereo-style', 'none')
indigo.setOption('render-label-mode', 'hetero')
mol = indigo.loadMolecule(molblock)
buf = render.renderToBuffer(mol)
img = cv2.imdecode(np.asarray(bytearray(buf), dtype=np.uint8), 1)
return img
def predict(image):
smiles, molblock = model.predict_image(image)
image = generate_mol_image(molblock)
return image, smiles, molblock
iface = gr.Interface(
predict,
inputs=gr.Image(label="Upload molecular image", show_label=False).style(height=256),
outputs=[
gr.Image(label="Prediction").style(height=256),
gr.Textbox(label="SMILES"),
gr.Textbox(label="Molfile"),
],
allow_flagging="auto",
title="MolScribe",
description="Convert a molecular image into SMILES and Molfile. (To view the prediction better, copy-paste the Molfile to ChemDraw.) <br> " \
"Paper: [_MolScribe: Robust Molecular Structure Recognition with Image-To-Graph Generation_](https://arxiv.org/abs/2205.14311) <br>" \
"Code: https://github.com/thomas0809/MolScribe <br>" \
"Authors: [Yujie Qian](mailto:[email protected]), Jiang Guo, Zhengkai Tu, Zhening Li, Connor W. Coley, Regina Barzilay. _MIT CSAIL_.",
examples=sorted(glob.glob('examples/*.png')),
examples_per_page=20,
)
iface.launch()