Spaces:
Running
Running
import gradio as gr | |
import os | |
import glob | |
import cv2 | |
import numpy as np | |
import torch | |
from molscribe import MolScribe | |
from indigo import Indigo | |
from indigo.renderer import IndigoRenderer | |
from huggingface_hub import hf_hub_download | |
REPO_ID = "yujieq/MolScribe" | |
FILENAME = "swin_base_char_aux_1m.pth" | |
ckpt_path = hf_hub_download(REPO_ID, FILENAME) | |
device = torch.device('cpu') | |
model = MolScribe(ckpt_path, device) | |
def generate_mol_image(molblock): | |
indigo = Indigo() | |
render = IndigoRenderer(indigo) | |
indigo.setOption('render-output-format', 'png') | |
indigo.setOption('render-background-color', '1,1,1') | |
indigo.setOption('render-stereo-style', 'none') | |
indigo.setOption('render-label-mode', 'hetero') | |
mol = indigo.loadMolecule(molblock) | |
buf = render.renderToBuffer(mol) | |
img = cv2.imdecode(np.asarray(bytearray(buf), dtype=np.uint8), 1) | |
return img | |
def predict(image): | |
smiles, molblock = model.predict_image(image) | |
image = generate_mol_image(molblock) | |
return image, smiles, molblock | |
iface = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Upload molecular image", show_label=False).style(height=256), | |
outputs=[ | |
gr.Image(label="Prediction").style(height=256), | |
gr.Textbox(label="SMILES"), | |
gr.Textbox(label="Molfile"), | |
], | |
allow_flagging="auto", | |
title="MolScribe", | |
description="Convert a molecular image into SMILES and Molfile. (To view the prediction better, copy-paste the Molfile to ChemDraw.) <br> " \ | |
"Paper: [_MolScribe: Robust Molecular Structure Recognition with Image-To-Graph Generation_](https://arxiv.org/abs/2205.14311) <br>" \ | |
"Code: https://github.com/thomas0809/MolScribe <br>" \ | |
"Authors: [Yujie Qian](mailto:[email protected]), Jiang Guo, Zhengkai Tu, Zhening Li, Connor W. Coley, Regina Barzilay. _MIT CSAIL_.", | |
examples=sorted(glob.glob('examples/*.png')), | |
examples_per_page=20, | |
) | |
iface.launch() | |